• Title/Summary/Keyword: pepper leaf

Search Result 315, Processing Time 0.031 seconds

Effect of Chemical Fertilizer and Compost on Soil Physicochemical Properties, Leaf Mineral Content, Yield and Fruit Quality of Red Pepper (Capsicum annuum L.) in Open Field

  • Lee, Seong Eun;Park, Jin Myeon;Park, Young Eun;Lim, Tae Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.683-688
    • /
    • 2015
  • Nowadays, sustainable and environment-friendly agriculture has become an important issue all around the world, and repeated applications of mineral and/or organic fertilizer will probably affect mineral nutrient dynamics in soil in the long term but only a limited number of observations are available. This study was carried out to investigate whether there is any influence of different fertilizer management for red pepper (Capsicum annuum L.) cultivation on soil physicochemical properties, leaf mineral content, yield and fruit quality in the aspect of long-term practice in open field condition. NPK, NPK+compost, compost only, and unfertilized control plot were included in the treatments. The application of chemical fertilizer and/or compost repeated annually for 17 years from 1994 to 2011. Soil organic matter content was higher in compost treatments than in no-manure treatments. Available phosphate and the yield of red pepper were highest in NPK+compost treatment followed by NPK (chemical fertilizer), compost, and control. The results indicate that in the long term, nitrogen supply is still needed for increasing red pepper yield, but reduction in the use of chemical fertilizer could be also possible with the proper application of compost.

Effects of Foliar Application of Bio-enzyme on the Seedlings Growth of Cucumber and Red Pepper (바이오효소(bio-enzyme)의 엽면시비가 오이, 고추 유묘의 생장에 미치는 영향)

  • 김홍기;서범석;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.2
    • /
    • pp.141-152
    • /
    • 1997
  • This experiment was conducted to know the effects of foliar applicated bio-enzyme on the early growth of cucumber and red pepper seedlings. Bio-enzyme was manufactured by the culture and proliferation of Bacillus genus and foliar applicated by the concentration of 0.075, 0.15, 0.3 g.$\ell$-1. Foliar application of bio-enzyme had great influenced to the early growth both cucumber and red pepper seedlings. Optimum concentrations of bio-enzyme applicated for the growth of plant height were determined as of 0.075 g.$\ell$-1 in cucumber but in red pepper seedlings 0.15g.$\ell$-1 was more favored. However, foliar application of 0.15g.$\ell$-1 of bio-enzyme was recommended for both cucumber and red pepper seedlings. Especially, leaf area and total dry weight which are main indices of good seedling were highest in the plot of standard concentrations(0.15g.$\ell$-1)of bio-enzyme.

  • PDF

Changes in Isozyme Patterns of Peroxidase and Esterase during Regeneration of Pepper (Capsicum annuum L.) (고추 (Capsicum annuum L.)의 재분화에 따른 Peroxidase와 Esterase 동위효소의 양상 변화)

  • 정현숙
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 1992
  • The plantlet was regenerated on MS medium containing BAP (2 mg/I) and 1M (1 mg/I) from leaf discs of pepper after 3 weeks of culture. And then, we investigated the activity of peroxidase and esterase and the pattern of their isozymes from leaf, stem and root in order to observe physiological and biochemical changes on the developemental stage, respectively. The peroxidase was expressed with tissue specificity because peroxidase activity according to the developemental stage of the tissue was not only highest in the leaf of the pepper at 10 days after it germinated but also 2 new bands of its isozyme were found in pI 7.2 and pI 5.2. However, a new pI 3.4 band was found in the leaf and root of the pepper after 14 days of germination, and in the stem was found out pI 5.2 band. As regeneration of leaf dises was progressed, its peroxiase activity was increased about 80% more than that of control after 14 days of culture and new pI 3.2 and 6.5 bands of it isozyme were found. The results suggested that peroxidase would be connected with regeneration of pepper. Also, esterase activity was increased about 50% more than that of control after 14 days of culture, the pattern of esterase isozyme was shown to be 3 cathodic bands and 1 anodic band after 7 days of culture.ulture.

  • PDF

Residue Distribution of Chlorothalonil, Kresoxim-methyl and Procymidone among Different Parts of Hot Pepper Plants (고추 부위별 chlorothalonil, kresoxim-methyl 및 procymidone 농약성분의 잔류 분포)

  • Lee, Mi-Gyung;Hwang, Jae-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.722-726
    • /
    • 2009
  • The residue distribution ratio of pesticides among the flesh, stem and leaves of hot peppers were investigated to assure the safety of pepper powder and pepper leaves. Mixed solutions of chlorothalonil (wettable powder), kresoximmethyl (water dispersible granules) and procymidone (wettable powder) were applied once onto pepper plants in a plastic film house. After 7 days, the fruits and leaves were harvested and the fruits were divided into the flesh and stems. Pesticide residues in each pepper part were then analyzed by gas chromatography. The results showed that the concentration ratios of the chemicals in the flesh:stem and flesh:leaf ranged from 1:2-5 and 1:11-39, respectively, depending on the chemical evaluated. The observed flesh:stem ratio indicates that the pesticide content of the pepper powder product can increase by 20% if pepper stems are included in the powder product. The Korea Food and Drug Administration does not set a pesticide maximum residue level (MRL) for pepper leaves if a residue ratio in leaves over flesh is more than ten times. Results from this study support non-MRL status on the pepper leaves for the studied pesticides. Additionally, we recommend that the chlorothalonil product of a wettable powder type include the phrase "prohibition of distribution or sale for pepper leaves as food" because chlorothalonil highly resided in pepper leaves as more than twenty-four times that is a criterion level to determine an inclusion of the phrase in the label of pesticide product.

Growth and Development Response of Bell Pepper (Capsicum annum L.) to $CO_2$ Enrichment under Three Different Temperature Regimes (3온도 수준에서의 $CO_2$ 농도 증가에 따른 피망의 생육 반응)

  • Yoon, Seong-Tak
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Predicting plant responses to changing atmospheric $CO_2$ and to the possibility of global warming are important concerns. The $CO_2$ concentration of the global atmosphere has increased during the last decades. This increase is expected to result in changes of global temperatures and this will also affect the growth and development of bell pepper (Capsicum annum L.) and other crops. The objective of this study was to evaluate the effects of atmospheric $CO_2$ enrichment and high temperature on the growth and development of bell pepper under three temperature regimes. There was no statistical difference in the days required from seeding to flowering between $CO_2$ treatments, whereas among three temperature regimes, high temperature plots of $35/25^{\circ}C$ showed the shortest days (52.5 days) required from seeding to flowering. The plant height of bell peppers 15 weeks after emergence showed no statistical significance, while plots of $30/20^{\circ}C$ showed the highest plant height among the three temperature regimes. Time-course response of plant height to $CO_2$, enrichment was restrained in high $CO_2$, concentration (800ppm), at the same time higher temperature promoted plant height. Average leaf area per plant of 400ppm was $6,008.8cm^2$ and it was $5,225.1cm^2$ in the plots of 800ppm, showing 15% more leaf area compared to 400ppm $CO_2$ concentration. Leaf dry weight between $CO_2$ concentration and among temperature regimes showed a statistical significance. The average leaf dry weight in the plot of 800ppm showed the highest (44.1g), which was 18.5% higher compared to that of 400ppm (37.2g) and among temperature regimes, it was the highest (49.8g) in the plot of $35/25^{\circ}C$. Above-ground dry weight showed statistical significance between $CO_2$ concentration and among temperature regimes. The average above-ground dry weight of 800ppm $CO_2$ concentration was 141.4g, 17.9% higher compared to 400ppm $CO_2$ concentration (119.9g). Among three temperature regimes, plots of $30/20^{\circ}C$ showed the highest average above-ground dry weight (168.9g), while plots of $35/25^{\circ}C$ were the lowest (102.3g). In the average bell pepper dry weight, 800ppm of $CO_2$ concentration showed higher bell pepper dry weight (59.5g) than that (44.3g) of 400ppm of $CO_2$ concentration. It was judged that high $CO_2$ concentration was profitable fur bell pepper yield and there was a tendency that when there was high $CO_2$, concentration (800ppm), low temperature ($25/15^{\circ}C$) was profitable for bell pepper dry weight, whereas it was the reverse ($30/20^{\circ}C$), in the case of ambient $CO_2$, concentration (400ppm). In the specific leaf area according to $CO_2$, concentration, 800ppm showed 117.4, which was 35.5% higher compared to that (159.1) of 400ppm, showing that leaf becomes thicker as $CO_2$ concentration increases. Regarding correlation coefficients among crop characteristics, leaf area was negatively correlated with the number of bell peppers per plant and bell pepper dry weight, showing that the higher the leaf area, the lower the bell pepper yield. Bell pepper dry weight per plant showed positively significant correlation with the number of bell peppers per plant and total above dry weight, which showed that the higher the number of bell peppers and the total above dry weight, the higher the bell pepper yield.

  • PDF

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Novel Sources of Resistance to Phytophthora capsici on Pepper (Capsicum sp.) Landraces from Mexico

  • Retes-Manjarrez, Jesus Enrique;Rubio-Aragon, Walter Arturo;Marques-Zequera, Isidro;Cruz-Lachica, Isabel;Garcia-Estrada, Raymundo Saul;Sy, Ousmane
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.600-607
    • /
    • 2020
  • Phytophthora capsici Leonian is a major pathogen of pepper worldwide and few resistance sources to this pathogen have been identified so far. The goals of this study were to identify new sources of resistance against P. capsici in Capsicum landraces and analyze the relationship between the resistance indicator of plant symptoms and some plant phenotype parameters of plant height, stem width, leaf length and leaf width. Thirty-two landraces of pepper were collected from fourteen states in Mexico. From each population, 36 plants were inoculated with 10,000 zoospores of P. capsici under controlled conditions. This experiment was repeated twice. Out of the 32 landraces, six showed high level of resistance, four showed intermediate resistance and five showed low level of resistance when compared with the susceptible control 'Bravo' and the resistant control 'CM334', indicating that these landraces are promising novel sources of resistance to P. capsici. There was no correlation between the symptoms and plant phenotype parameters. However, these parameters were not affected in the group classified as highly resistant, indicating that P. capsici does not affect the growing of these resistant pepper landraces. The other resistant groups were significantly affected in a differently manner regarding their phenotype, indicating that this pathogen reduce their growth in different ways. This study reports novel resistance sources with great potential that could be used in breeding programs to develop new pepper cultivars with durable resistance to P. capsici.

Determination of Factors Affecting Injury of Pepper Cultivars to Napropamide and Pendimethalin (고추에서 Napropamide 및 Pendimethalin에 대한 약해요인(藥害要因) 구명(究明))

  • Kim, M.H.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.321-328
    • /
    • 1987
  • In order to examine the factors affecting herbicidal injury of pepper, crop injury and growth response of 2 red pepper cultivars and 2 sweet pepper cultivars to napropamide and pendimethalin were evaluated under defferent conditions of soil texture, organic matter, soil temperature and seeding depth in the greenhouse. Growth response of 4 pepper cultivars was also examined by roos dipping to napropamide and pendimethalin. More inhibition of top leaf growth by root dipping to napropamide was occurred in red pepper cultivars than in sweet pepper cultivars. However, sweet pepper cultivars showed more severe inhibition of top leaf growth by root dipping to pendimethalin compared to red pepper cultivars. Crop injury due to napropamide and pendimethalin was more severe in sandy soil than in loam soil and this trend was more remarkably shown in sweet pepper cultivars. Crop injury due to napropamide and pendimethalin was reduced with the increase in organic matter especially in cv. Walgeykwan and cv. Orient al Pimento. As seeding depth of pepper cultivars became deeper, crop injury due to napropamide and pendimethalin was reduced in cv. Walgyekwan and cv. Oriental Pimento.

  • PDF

Hot Pepper Functional Genomics: Monitoring of Global Gene Expression Profiles During Non-Host Resistance Reactions in Hot Pepper Plant ( Capsicum annuum).

  • Lee, Sanghyeob;Chung, Eun-Joo;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.80.2-81
    • /
    • 2003
  • Since hot peppers (Capsicum annuum L.) are getting reputation as an important source of vitamins, medicine and many other areas, consumption and cultivation is being increased in the world. In spite of this usefulness, so little attention has been given to the hot pepper plants. To date, less than 500 nucleotide sequences including redundancy has been identified in NCBI database. Therefore we started to EST sequencing project for initial characterization of the genome, because of the large genome size of hot pepper (2.7 3.3 ${\times}$ 109 bp), To date, a set of 10,000 non-redundant genes were identified by EST sequencing for microarray-based gene expression studies. At present, cDNA microarrays containing 4,685 unigene clones are used for hybridization labeled targets derived from pathogen infected and uninoculated leaf tissues. Monitoring of gene expression profiles of hot pepper interactions with soybean pustule pathogen (Xag;Xanthomonas axonopodis pv. glycine) will be presented.

  • PDF