• 제목/요약/키워드: pepper Phytophthora blight

검색결과 159건 처리시간 0.029초

Baseline Sensitivity to Mandipropamid Among Isolates of Phytophthora capsici Causing Phytophthora Blight on Pepper

  • Jang, Ho-Sun;Lee, Soo-Min;Kim, Sun-Bo;Kim, Joo-Hyung;Knight, Susan;Park, Kwee-Doo;McKenzie, Duncan;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.317-321
    • /
    • 2009
  • Sensitivity to the new carboxylic acid amide fungicide, mandipropamid, of Phytophthora capsici causing pepper Phytophthora blight was determined on 187 isolates collected in Korea over 3 years, from 2005 to 2007. All isolates were sensitive to mandipropamid, with $EC_{30}$ values for growth of mycelia ranging from 0.001 to $0.037\;{\mu}g/ml$. Among the isolates, 147 (79.0%) isolates were sensitive to metalaxyl, whereas others were resistant to this fungicide. Mandipropamid had the same effect on mycelium growth of both metalaxyl-sensitive and metalaxyl-resistant isolates, indicating an absence of cross-resistance between these two fungicides. Comparison of the sensitivities of P. capsici isolates showed a positive correlation between sensitivity to mandipropamid and dimethomorph ($r^2$=0.8533). The results of this study indicate that there is no evidence for development of resistance to mandipropamid in this population of P. capsici isolates collected in Korea.

A New Formulation System for Slow Releasing of Phosphorous Acid in Soil for Controlling Phytophthora Diseases

  • Park, Hae-Jun;Kim, Sung-Ho;Jee, Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • 제23권1호
    • /
    • pp.26-30
    • /
    • 2007
  • Phosphorous acid is known to effectively control various Oomycetes diseases. The phosphoric acid moves upward and downward through the xylem and phloem in plants. The sustainable forms of the slow releasing chemical in rhizosphere would be ideal to be up-taken by plants. Therefore, we developed a new system for phosphorous acid formulation using a carrier coated with polysaccharides. When the product was applied in rhizosphere, the adequate amount of phosphorous acid was consistently released up to 4 weeks in rhizosphere soils. While soil drenching with phosphorous acid at 1,000 ${\mu}g/ml$ and metalaxyl at 150 ${\mu}g/ml$ were not effective to control pepper Phytophthora blight for 4 weeks, direct application of our formulation product around basal stem of pepper plants resulted in excellent disease control effect against Phytophthora blight over 4 weeks. The application of 4 g of our product per plant was optimum to control the disease, and 8 g product/plant did not cause phytotoxicity. Based on the results, we conclude that the applications of the formulation product once or twice during cropping season can control Phytophthora diseases on various crops.

2007-2008년도 경북 북부지역 고추산지의 병해 발생상황 (Disease Occurrence on Red-pepper Plants Surveyed in Northern Kyungbuk Province, 2007-2008)

  • 서지애;이영근;김병수;황재문;최석원
    • 식물병연구
    • /
    • 제17권2호
    • /
    • pp.205-210
    • /
    • 2011
  • 경상북도 북부지역의 주요 고추 산지를 대상으로 생육기별 발병상황을 조사하고, 수확기 발병상황을 기상 환경 및 재배 방식과 관련하여 분석하였다. 2007년과 2008년에 가장 피해가 심하였던 병은 모자이크병과 탄저병, 역병이었다. 2008년에는 2007년에 비하여 모자이크병 발생이 심하였으며, 그 외의 병 발생은 2007년에 비하여 적었다. 수확기 모자이크병 발생 정도는 5월의 강수량과 부의 상관이 인정되었으며, 8월의 강수량과 9월의 역병 발생 사이에 정의 상관이 인정되었다. 비가림 시설재배 고추에서는 노지재배에 비하여 탄저병과 역병, 모자이크병에 의한 피해가 적었다. 그러나 비가림 시설재배를 하는 고추 재배 농가는 5%에 불과하였다.

Enhancement of Biocontrol Efficacy of Serratia plymuthica A21-4 Against Phytophthora Blight of Pepper by Improvement of Inoculation Buffer Solution

  • Shen, Shun-Shan;Park, Sin-Hyo;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.68-72
    • /
    • 2005
  • The production of antibiotic substances by Serratia plymuthica A21-4 was greatly enhanced by modifying components of a growth medium. When the minimal medium containing $K_2HPO_4$ 0.7%, $KH_2PO_4$ 0.2%, $(NH_4)_2SO_4$ 0.1%, $MgSO_4$ 0.01% was used as basal medium, the best carbon source for antibiotic production was glycerol and the most favorable nitrogen source was ammonium sulfate. The modified medium for antibiotic production also increased colonization ability of A21-4 on pepper root and in the rhizosphere soil. When the cells of A21-4 were suspended in modified medium, the population density of A21-4 on pepper root was 10-100 times higher than that suspended in 0.1 M $MgSO_4$. The population density of A21-4 on root did not decrease under $10^6$ cfu/groot up to 21 days after treatment although the inoculum of A21-4 was reduced to $10^7$ cell/ml. Similar tendency was also observed in the rhizosphere soil. Consequently, Phytophthora blight of pepper was successfully controlled by A21-4 with $10^7$ cell/ml suspended in the modified buffer solution instead of $10^9$ cfu/ml suspended in 0.1 M $MgSO_4$.

Characterization of Bacillus luciferensis Strain KJ2C12 from Pepper Root, a Biocontrol Agent of Phytophthora Blight of Pepper

  • Kim, Hye-Sook;Sang, Mee-Kyung;Myung, Inn-Shik;Chun, Se-Chul;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.62-69
    • /
    • 2009
  • In this study, we characterized the bacterial strain KJ2C12 in relation with its biocontrol activity against Phytophthora capsici on pepper, and identified this strain using morphological, physiological, biochemical, fatty acid methyl ester, and 16S rRNA gene sequence analyses. Strain KJ2C12 significantly (P=0.05) reduced both final disease severity and areas under the disease progress curves of 5-week-old pepper plants inoculated with P. capsici compared to buffer-treated controls. As for the production of antibiotics, biofilms, biosurfactant, extracellular enzyme, HCN, and swarming activity, strain KJ2C12 produced an extracellular enzyme with protease activity, but no other productions or swarming activity. However, Escherichia coli produced weak biofilm only. Strain KJ2C12 could colonize pepper roots more effectively in a gnotobiotic system using sterile quartz sand compared to E. coli over 4 weeks after treatments. However, no bacterial populations were detected in 10 mM $MgSO_4$ buffer-treated controls. Strain KJ2C12 produced significantly higher microbial activity than the $MgSO_4$-treated control or E. coli over 4 weeks after treatments. Bacterial strain KJ2C12 was identified as Bacillus luciferensis based on morphological, physiological, and biochemical characteristics as well as FAME and 16S rRNA gene sequence analyses. In addition, these results suggested that B. luciferensis strain KJ2C12 could reduce Phytophthora blight of pepper by protecting infection courts through enhanced effective root colonization with protease production and an increase of soil microbial activity.

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

고추 풋마름병.역병 복합 저항성 계통육성 (Breeding Lines with Multiple Resistance to both Bacterial Writ and Phytophthora Blight in Pepper(Capsicum annuum L.))

  • 한정혜;김주영;황희숙;김병수
    • Current Research on Agriculture and Life Sciences
    • /
    • 제18권
    • /
    • pp.9-17
    • /
    • 2000
  • 풋마름병과 역병에 복합저항성인 계통을 육성하기 위한 노력으로서 앞서 역병 저항성으로 육성한 계통(16-2-3-2 = 역병 저항성 '칼미초', 19-1-3-7-1-1, 19-2-4-5-3-2 = 역병 저항성 '수비초', 김 등, 1996)과 풋마름병 저항성 계통(KC350 = MC 4, KC353 = PBC631)을 교배하여 육성한 $F_5$$BC_1F_4$, $F_6$$BC_1F_5$ 세대에 대해 1999년과 2000년에 각각 풋마름병과 역병에 대한 복합저항성을 검정하였다. 풋마름병과 역병에 복합 저항성을 보인 개체를 선발하여 다음 세대의 종자를 채종하였다.

  • PDF

Xenorhabdus nematophilla 유래물질 벤질리덴아세톤의 고추 병해 방제 효과 (Control Effects of Benzylideneacetone Isolated from Xenorabdus nematophilla K1 on the Diseases of Redpepper Plants)

  • 박수진;전미현;천원수;서지애;이영근;김용균
    • 식물병연구
    • /
    • 제16권2호
    • /
    • pp.170-175
    • /
    • 2010
  • 벤질리덴아세톤은 모노테르펜 화합물로 곤충병원세균인 Xenorhabdus nematophilla K1의 대사물질이다. 본 연구는 벤질리덴아세톤을 이용하여 고추의 두 가지 주요 병해에 대한 방제 가능성이 조사되었다. 벤질리덴아세톤은 역병균 Phytophthora capsici와 탄저병균 Colletotrichum acutatum에 대해 강력한 억제능력을 가지고 있었다. 이러한 벤질리덴아세톤의 항균력은 태양이 비치는 자연조건에서 60일 이상 유지되었으며, 토양수 내에서도 상실되지 않았다. 벤질리덴아세톤을 혼합한 토양에 심겨진 고추 근권토양에 Phytophthora capsici 현탁액을 관주하였을 때, 역병 발생이 크게 감소되었다. 또한 Colletotrichum acutatum에 오염된 고추 열매 표면에 벤질리덴아세톤 용액을 살포하여 탄저병 발생을 억제할 수 있었다. 이러한 결과는 벤질리덴아세톤을 고추 역병과 탄저병 방제용 농약으로 개발할 수 있음을 제시하고 있다.