• Title/Summary/Keyword: pentylenetetrazol

Search Result 12, Processing Time 0.016 seconds

The Prophylactic and Therapeutic Effects of Saffron Extract and Crocin on Ethanol Withdrawal Syndrome in Mice

  • Shoja, Maryam;Mehri, Soghra;Amin, Bahareh;Askari, Vahid Reza;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.21 no.4
    • /
    • pp.277-283
    • /
    • 2018
  • Objectives: Ethanol withdrawal following its chronic use is a serious outcome and challenging to treatment. The chronic use of ethanol induces a progressive neuroplasticity in different reigns of brain. In this study we evaluated the effects of aqueous extract of Crocus sativus L. (saffron) and its active compound, crocin, on the withdrawal behavior induced after repeated administration of ethanol, in two regimens of prophylactic (administration of drugs concomitant with the induction of dependence) and treatment (administration of drugs during the period of ethanol withdrawal) in mice which received ethanol. Methods: Ethanol dependence was induced by oral administration of 10% v/v ethanol (2 g/kg) for 7 days. The aqueous extracts of saffron (40, 80 and 160) and crocin (10, 20 and 40 mg/kg) were administered to mice in two regimens of prophylactic (along with ethanol) and treatment (during withdrawal period). Diazepam (1 mg/kg) was used as a positive control. Six hours after discontinuation of the ethanol, seizure was evaluated by the sub-convulsive dose of pentyleneltetrazole (PTZ) (30 mg/kg). The open field test and Rota rod test were used for evaluation of locomotor activity and motor incoordination, respectively. Results: Both extracts and crocin increased the number of crossed lined in the open field test. PTZ kindling seizure was inhibited in animals received extract (80 and 160 mg/kg) in both regimens. Motor incoordination was only improved following administration of crocin. Conclusion: The aqueous extract of saffron and crocin can be considered as safe agents and reliable alternative to diazepam in management of ethanol withdrawal syndrome.

Catalpol and Mannitol, Two Components of Rehmannia glutinosa, Exhibit Anticonvulsant Effects Probably via GABAA Receptor Regulation

  • Kim, Mikyung;Acharya, Srijan;Botanas, Chrislean Jun;Custodio, Raly James;Lee, Hyun Jun;Sayson, Leandro Val;Abiero, Arvie;Lee, Yong Soo;Cheong, Jae Hoon;Kim, Kyeong-man;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Epilepsy is a brain disorder that affects millions of people worldwide and is usually managed using currently available antiepileptic drugs, which result in adverse effects and are ineffective in approximately 20-25% of patients. Thus, there is growing interest in the development of new antiepileptic drugs with fewer side effects. In a previous study, we showed that a Rehmannia glutinosa (RG) water extract has protective effects against electroshock- and pentylenetetrazol (PTZ)-induced seizures, with fewer side effects. In this study, the objective was to identify the RG components that are responsible for its anticonvulsant effects. Initially, a number of RG components (aucubin, acteoside, catalpol, and mannitol) were screened, and the anticonvulsant effects of different doses of catalpol, mannitol, and their combination on electroshock- and chemically (PTZ or strychnine)-induced seizures in mice, were further assessed. Gamma-aminobutyric acid (GABA) receptor binding assay and electroencephalography (EEG) analysis were conducted to identify the potential underlying drug mechanism. Additionally, treated mice were tested using open-field and rotarod tests. Catalpol, mannitol, and their combination increased threshold against electroshock-induced seizures, and decreased the percentage of seizure responses induced by PTZ, a GABA antagonist. GABA receptor binding assay results revealed that catalpol and mannitol are associated with GABA receptor activity, and EEG analysis provided evidence that catalpol and mannitol have anticonvulsant effects against PTZ-induced seizures. In summary, our results indicate that catalpol and mannitol have anticonvulsant properties, and may mediate the protective effects of RG against seizures.