• Title/Summary/Keyword: pentachlorophenol(PCP)

Search Result 55, Processing Time 0.019 seconds

Biological Evaluation for Characteristics of Leachate Toxicity from Municipal Solid Waste Landfill (생물학적 방법에 의한 도시생활폐기물 매립지의 침출수 독성특성 평가)

  • 황인영;류경무
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.31-39
    • /
    • 1996
  • Leachate from municipal solid waste (MSW) landfill, effluent from leachate treatment plant, and ground water sample from a monitoring well near landfill site were tested for an acute toxicity. Microtox toxicity test was used for testing the acute toxicity of leachate and other samples. EC$_{50}$ values which a concentration of pollutant for reducing 50% light output from luminescent bacteria, Photobacterium phosphoreum were determined to assess the toxicity of pollutants as well as the relative toxicity. In addition, characteristics of leachate were studied and compared to those of phenol and pentachlorophenol (PCP) which are typical aquatic toxic pollutants. For leachate, EC$_{50}$ for 30 min incubation was 10.8%, while for phenol and PCP, 46 ppm and 1.2 ppm, respectively. the relative toxicity of treated leachate by in situ aeration with activated sludge was reduced to more than 75% of toxicity of the untreated leachate. Microtox toxicity test was failed to figure out EC$_{50}$ values for groundwater from a monitoring well since the relative toxicity of the unconcentrated sample was too low to estimate EC$_{50}$. Addition of activated carbon to leachate was reduced the relative toxicity. The reduction Pattern of the relative toxicity of leachate by mechanical aeration was similar to that of PCP, but different from that of phenol. These findings suggest that the toxicity of leachate may come from PCP-like toxic compounds rather than phenol-like one. In conclusion, the process of aeration with activated sludge might be very important to reduce the environmental toxicity of leachate. And Microtox test could be a reasonable bioassay for screening and monitoring the environmental toxicity of leachate from municipal solid waste landfill as well as for determining the reduction efficiency of the leachate toxicity by various treatment processes in leachate treatment plant.

  • PDF

Vertical Distribution of Persistent Organic Pollutant in Core Sediments from Upo Wetland (자연습지 우포늪 퇴적물의 연도별 잔류성 유기오염물질 축적도)

  • Boo, Min Ho;Lee, Chan Won;Lee, Sang Chun;Kim, Jong Guk;Jeon, Hong Pyo;Kim, Ki Ho;Choi, Kyung Hee;Yun, Jun Hun;Jeong, Mi Jung
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.23-37
    • /
    • 2008
  • The vertical distribution of dioxins and hexachlorobenzene(HCB) in a sediment core was investigated to elucidate historical trends of dioxins and HCB deposited into Upo wetland. The total concentration of dioxin ranged from 8.7 to 66.27 pg/g-dw in Upo sediments deposited, and from 17.64 to 97.03 pg/g-dw in Mokpo. Dioxin fluxes increased from the first-1990s and then reached a maximum in the mid-1990s. The major source of dioxin by comparing the congeners pattern was pentachlorophenol(PCP) used of agrochemicals. The HCB concentration in most of samples was detected below the MDL(Method Detection Limit of 0.5ng/g), except a few samples.

  • PDF

Determination of chlorophenols from the industrial wastewater by GC/MS (GC/MS를 이용한 산업폐수중의 염화페놀류 분석)

  • Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.320-328
    • /
    • 2005
  • The most common five chlorophenols (4-chloro-3-methylphenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol) were determined from the industrial wastewater by GC/MS. The samples were collected from the petrochemical company, textile company and leather making company. The developed analytical method was modified by USEPA Method 3510. The samples were extracted with dichloromethane under pH 2 and pH 5-6, and determined by the GC/MS with SIM mode. There were good linearities (above $R^2=0.9943$) on e ranges of the 0.1 ng/mL~10 ng/mL and 0.5 ng/mL~10 ng/mL, and the limit of detection were between 0.1 ng/mL and 0.5 ng/mL. The absolute recoveries were measured at the concentration of 1, 5, and 10 ng/mL, and the recovery was 71.6~98.9% except for PCP. The relative standard deviation (RSD) was 1.2~14.3% and it gave a good reproducibility for the assay. The bias, which shows the accuracy, was a good although it was a little high values (11.3~22.1%) at the low concentration (1 ng/mL).

Purification and Characterization of Carboxymethyl-cellulase Produced by Bacillus sp. KD1014

  • Lee, Kyung-Dong;Kim, Jungho;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.107-112
    • /
    • 1999
  • A carboxymethyl-cellulase (CMCase) was purified from the culture supernatant of Bacillus sp. KD1014 by ultrafiltration, ammonium sulfate precipitation, and a series of chromatography on QAE-Sephadex A-50, hydroxylapatite and Sephadex G-75. The purified CMCase was a single protein of 32 kDa, showed an optimum activity at $60^{\circ}C$ and pH 6.0, and had a half-life of 23 min at $70^{\circ}C$. The enzyme activity was not influenced by metal ions such as $Mg^{2+},\;Fe^{3+},\;K^+,\;Zn^{2+}$, and $Cu^{2+}$ at a concentration of 1.0 mM, partially inhibited by $Mn^{2+}$ and $Ag^+$, and significantly inhibited by pentachlorophenol (PCP). The purified enzyme showed a 3.9-times higher activity on lichenan than on CMC, but hardly cleaved xylan, starch, avicel, laminarin, filter paper and levan. The results of activity staining of the purified enzyme separated by native and denaturing gel electrophoresis suggested that the CMCase might exist in dimeric, oligomeric or aggregated form as well as in monomeric form. The enzymatic cleavage products from cellotetraose indicated that the CMCase possessed transglycosylation activity.

  • PDF

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.