• Title/Summary/Keyword: penetration energy barrier

Search Result 16, Processing Time 0.034 seconds

Ab-initio Study of Hydrogen Permeation though Palladium Membrane (팔라듐 얇은 막의 수소 투과에 대한 제일 원리 계산)

  • Cha, Pil-Ryung;Kim, Jin-You;Seok, Hyun-Kwang;Kim, Yu Chan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.296-303
    • /
    • 2008
  • Hydrogen permeation through dense palladium-based membranes has attracted the attention of many scientists largely due to their unmatched potential as hydrogen-selective membranes for membrane reactor applications. Although it is well known that the permeation mechanism of hydrogen through Pd involves various processes such as dissociative adsorption, transitions to and from the bulk Pd, diffusion within Pd, and recombinative desorption, it is still unclear which process mainly limits hydrogen permeation at a given temperature and hydrogen partial pressure. In this study, we report an all-electron density-functional theory study of hydrogen permeation through Pd membrane (using VASP code). Especially, we focus on the variation of the energy barrier of the penetration process from the surface to the bulk with hydrogen coverage, which means the large reduction of the fracture stress in the brittle crack propagation considering Griffith's criterion. It is also found that the penetration energy barrier from the surface to the bulk largely decreases so that it almost vanishes at the coverage 1.25, which means that the penetration process cannot be the rate determining process.

Impact of Energy Relaxation of Channel Electrons on Drain-Induced Barrier Lowering in Nano-Scale Si-Based MOSFETs

  • Mao, Ling-Feng
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.284-291
    • /
    • 2017
  • Drain-induced barrier lowering (DIBL) is one of the main parameters employed to indicate the short-channel effect for nano metal-oxide semiconductor field-effect transistors (MOSFETs). We propose a new physical model of the DIBL effect under two-dimensional approximations based on the energy-conservation equation for channel electrons in FETs, which is different from the former field-penetration model. The DIBL is caused by lowering of the effective potential barrier height seen by the channel electrons because a lateral channel electric field results in an increase in the average kinetic energy of the channel electrons. The channel length, temperature, and doping concentration-dependent DIBL effects predicted by the proposed physical model agree well with the experimental data and simulation results reported in Nature and other journals.

A study on nanoparticle filtration characteristics of multilayer meltblown depth filters

  • Lee, Kang-San;Hasolli, Naim;Jeon, Seong-Min;Lee, Jae-Rang;Kim, Kwang-Deuk;Park, Young-Ok;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • Due to recent development in nanotechnology and increasing usage and production of nanomaterials, numerous studies related to environment, sanitation and safety handling of nanoparticle are being conducted. Since nanoparticles can be easily absorbed into human bodies through breathing process, based on their toxic substances and their large specific surface, these particles can cause serious health damage. Therefore, to reduce nanoparticle emissions, nanofiltration technology is becoming a serious issue. Filtration is a separation process during which a fluid passes through a barrier by removing the particles from the stream. Barrier filters can be made of various materials and shapes. One of the most common type of barrier filter is the fibrous filter. Fibrous filters are divided in two types: nonwoven and woven fabrics. Polypropylene is a thermoplastic material, used as a base material for melt blown nonwoven fabric. In this study, we examined filtration property of KCl nanoparticles with a mean particle diameter of 75 nm using multilayer meltblown filter samples. These experiments verify that the penetration of nanoparticle in the filter correlate with pressure drop; the meltblown layer MB1 has the greatest effect on dust collection efficiency of the filter. Among all tested samples, dust collection efficiency of 2-layer filter was best. However, when considering the overall pressure drop and dust collection efficiency, the 4-layer filter has the highest quality factor for particles smaller than 70 nm.

Investigation of the various properties of several candidate additives as buffer materials

  • Gi-Jun Lee;Seok Yoon;Taehyun Kim;Seeun Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1191-1198
    • /
    • 2023
  • Bentonite buffer material is a critical component in an engineered barrier system (EBS) for disposing high-level radioactive waste (HLW). The bentonite buffer material protects the disposal canister from groundwater penetration and releases decay heat to the surrounding rock mass; thus, it should possess high thermal conductivity, low hydraulic conductivity, and moderate swelling pressure to safely dispose the HLWs. Bentonite clay is a suitable buffer material because it satisfies the safety criteria. Several additives have been suggested as mixtures with bentonite to increase the thermal-hydraulic-mechanical-chemical (THMC) properties of bentonite buffer materials. Therefore, this study investigated the geotechnical, mineralogical, and THMC properties of several candidate additives such as sand, graphite, granite, and SiC powders. Datasets obtained in this study can be used to select adequate additives to improve the THMC properties of the buffer material.

A Study on Characteristics of ZnO/n-Si Low Cost Solar Cells (ZnO/n-Si 저가 박막태양전지의 특성연구)

  • Baik, D.G.;Cho, S.M.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • ZnO/n-Si junctions were fabricated by spin coating with ZnO precursor produced by the sol-gel process. In order to increase the electrical conductivity of ZnO films, the films were n-doped with Al impurity and subsequently annealed at about $450^{\circ}C$ under reducing environments. The ohmic contacts between n-Si and AI for a bottom electrode were successfully fabricated by doping the rear surface of Si substrate with phosphorous atoms. The front surface of the substrate was also doped with phosphorous atoms for improving the efficiency of the solar cells. Consequently, conversion efficiencies ranging up to about 5.3% were obtained. These efficiencies were found to decrease slowly with time because of the oxide films formed at the ZnO/Si interface upon oxygen penetration through the porous ZnO. Oxygen barrier layers could be necessary in order to prevent the reduction of conversion efficiencies.

  • PDF

Profitability Analysis of ESS with PV Generation (PV연계형 ESS의 설치 규모에 따른 수익영향)

  • Kim, Chang Soo;Choi, Sang Bong
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.86-93
    • /
    • 2020
  • The investment in solar and wind generation is rapidly increasing with government's renewable expansion policy and Renewable Portfolio Standard (RPS). Since the large penetration of solar and wind generation increases the variability and uncertainty of supply and demand balance in power system, the government is pursuing the policy of supplying energy storage system (ESS) linked to renewable energy. ESS contributes to the ease of transmission and distribution grid by shifting PV generation from daytime to evening hours. Recently, the declining market price of REC as ESS incentive, policies to cut down incentives and limited ESS storage due to fire events lead to the aggravation of long-term profitability, thus working as a barrier of ESS spreading. In this study, the factors affecting the profit of ESS are analyzed and brief indicators are derived. Based on the indicators, the profit changes are analyzed considering the variation of REC market price and REC incentive weights. Based on the profit change with respect to the increase of ESS capacity, economical ESS installation capacity is suggested.

Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations (압축 벤토나이트 완충재의 온도에 따른 열전도도 평가)

  • Yoon, Seok;Park, Seunghun;Kim, Min-Seop;Kim, Geon-Young;Lee, Seung-Rae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2020
  • An engineered barrier system (EBS) for the geological disposal of high-level radioactive waste (HLW) consists of a disposal canister packed with spent fuel, buffer material, backfill material, and gap-filling material. The buffer material fills the space between the canister and the near-field rock, thus serving to restrain the release of radionuclides and protect the canister from groundwater penetration. Furthermore, as significant amounts of heat energy are released from the canister to the surrounding rock, the thermal conductivity of the buffer plays an important role in maintaining the safety of the entire disposal system. Therefore, given the high levels of heat released from disposal canisters, this study measured the thermal conductivities of compacted bentonite buffers from Gyeongju under temperature variations ranging 25 to 80~90℃. There was a 5~20% increase in thermal conductivity as the temperature increased, and the temperature effect increased as the degree of saturation increased.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

Hydrogen Storage Properties of Microporous Carbon Nitride Spheres (구형의 질화탄소 마이크로세공체의 수소저장 특성)

  • Kim, Se-Yun;Suh, Won-Hyuk;Choi, Jung-Hoon;Yi, Yoo-Soo;Lee, Sung-Keun;Stucky, Galen D.;Kang, Jeung-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.744-744
    • /
    • 2009
  • The development of safe and suitable hydrogen storage materials is one of key issues for commercializing hydrogen as an energy carrier. Carbon based materials have been investigated for many years to store hydrogen by the adsorption of the gas on the surface of the carbon structure. Recently, it is reported that carbon nitride nanobells have high hydrogen storage capacity since the nitrogen atom plays an important role on attracting hydrogen molecules. Here we report carbon nitride microporous spheres (CNMS) which have the maximum surface area of 995.3 $m^2/g$. Melamine-Formaldehyde resin is the source of carbon and nitrogen in CNMS. Most of the CNMS pores have diameters in the range of 6 to 8 A which could give a penetration energy barrier to a certain molecule. In addition, the maximum hydrogen storage capacities of carbon nitride spheres are 1.9 wt% under 77 K and 1 atm.

  • PDF

Effect of Applied Voltage on the Reliability of Coating Flaw Detection of Pipe with Different Buried Depths

  • Lim, B.T.;Kim, M.G.;Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.277-284
    • /
    • 2019
  • External corrosion control of buried pipe can be achieved by the combination of barrier coating and cathodic protection. Coating damage and deterioration can be induced by many reasons; damage during handling and laying, enhanced failure at low temperatures, failure during commissioning and operation, disbanding due to inadequate surface cleaning, rock penetration during installation and service etc. This work focused on the effect of survey conditions on the reliability of coating flaw detection of buried pipes. The effects of applied voltage and anode location on the detection reliability of coating flaw of buried pipe in soil with the resistivity of ca. 25.8 kΩ·cm were discussed. Higher applied voltage increased the detection reliability, regardless of buried depth, but deeper burial depth reduced the reliability. The location of the anode has influenced on the detection reliability. This behaviour may be induced by the variation of current distribution by the applied voltage and buried depth. From the relationship between the applied voltage and reliability, the needed detection potential to get a desire detection reliability can be calculated to get 100% detection reliability using the derived equation.