• Title/Summary/Keyword: penetrating

Search Result 999, Processing Time 0.029 seconds

Maxillary Labial Frenum and Its Relationship to Developing Dentition in Korean Children (한국 어린이의 상순소대 부착위치 및 치령과의 관련성)

  • Cho, Nayoung;Jeon, Hyejin;Ko, Younghan;Kim, Jaegon;Baik, Byeongju;Yang, Yeonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.3
    • /
    • pp.266-271
    • /
    • 2014
  • This study was performed to evaluate the relationship between the types of maxillary labial frenum attachment and the dental age in children. The maxillary labial frenum attachment levels were examined from the children who visited Chonbuk National University Dental Hospital between April, 2010 and December, 2013. The total number of the examined children was 320 (160 males, 160 females) between the age of 2 and 12. The types of maxillary labial frenum were categorized according to Placek's classification and each type was analyzed for its relationship with both Hellman's dental age and the eruption stage of permanent maxillary anterior teeth. The observed forms of maxillary labial frenum along with their frequency were as follows: gingival (56.3%), papillary (20.6%), mucosal (18.1%) and papillary penetrating (5.0%). The frenum form showed no significant difference due to gender (p > 0.05). From IC to IIIB in Hellman's dental age, the mucosal type increased significantly (p < 0.001). There was no significant relationship between the types of maxillary labial frenum attachment and the eruption state of permanent maxillary anterior teeth (p > 0.05).

Compressive Strength and Chloride Ion Penetration Resistance of SHCC Coated by PDMS-based Penetrating Water Repellency (PDMS 흡수방지재를 적용한 SHCC의 압축강도 및 염화물이온 침투저항성)

  • Lee, Jun-Hee;Hyun, Jung-Hwan;Park, Su-Hyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • In this study, Polydimethylsiloxane (PDMS) was applied to Strain Hardening Cement Composites (SHCC) for penetrating water repellency. The penetration depth of PDMS, strength of SHCC, and chloride ion penetration resistance of SHCC were investigated. As a result of measuring penetration depth of PDMS when applying different application method, it was confirmed that all methods satisfied the requirements of KS F 4930. Although the immersion method showed the largest penetration depth, the spray method was considered to be more appropriate considering the ease of field application. Compressive strength tests showed that the penetration depth of PDMS decreased as the compressive strength of SHCC increased. The compressive strength of M4-A and M4-B specimens with large PDMS penetration depths decreased by 9.6% and 8.0%, respectively, compared with those of M4 specimens produced without PDMS. Compressive strengths of the M1-A and M1-B specimens with small PDMS penetration depths were reduced by 4% and 2.2%, respectively, compared with the M1 specimen. As a result, it can be seen that the strength reduction rate of SHCC increases as the penetration depth of PDMS increases. The chlorine ion penetration tests showed that the chlorine ion penetration resistance increases with the penetration depth of PDMS.

The Relationship between Visual Outcome and Ocular Trauma Score after Open Globe Injuries in Children (소아청소년 개방안구손상 환자에서의 시력예후와 안외상 점수와의 연관성)

  • Park, Su Jin;Son, Byeong Jae
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.11
    • /
    • pp.1062-1070
    • /
    • 2018
  • Purpose: We evaluated the prognostic factors of open globe injuries in children and adolescents, and compared the ocular trauma score (OTS) and pediatric penetrating ocular trauma score (POTS). Methods: We performed a retrospective review of 77 children under 18 years of age who visited our clinic with open globe injuries between May 1993 and April 2014. We investigated the factors that may affect final visual acuity. We also compared the OTS and POTS using receiver operating characteristic curves as a method to predict final visual acuity. Results: By univariate analysis, an initial visual acuity less than 20/200, globe rupture, wound size greater than 7.0 mm, retinal detachment, lens dislocation, and total number of operations contributed to worse visual outcomes (<20/200). Conversely, central corneal involvement, traumatic cataract, wound size less than 7.0 mm, and initial visual acuity greater than 20/200 were better prognostic indicators (${\geq}20/32$). Both OTS and POTS had diagnostic value as a predictor of final visual acuity, although there were no statistically significant differences between the two scoring systems. Conclusions: Initial visual acuity and wound size are important prognostic factors for the final visual acuity in children and adolescent, following open globe injuries. Both OTS and POTS are reliable prognostic models for open globe injuries in children and adolescents.

Clinical Evaluation of a Rebound Tonometer in Patients Who Underwent Penetrating Keratoplasty (전층각막이식을 시행한 안에서 리바운드 안압계의 임상적 유용성)

  • Kim, Jong Woo;Jung, Ji Won
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1122-1128
    • /
    • 2018
  • Purpose: To compare the measurements of the rebound tonometer (RT), Goldmann applanation tonometer (GAT) and noncontact tonometer (NCT) in patients who underwent penetrating keratoplasty (PKP), and to evaluate the reproducibility of the RT measurements. Methods: This study included 19 PKP eyes and 28 normal eyes. We compared the intraocular pressure (IOP) measurements of the GAT and NCT with the RT in both groups using Spearman's correlation analysis and the Wilcoxon signed-rank test. The IOP, as measured with an RT in each group, was assessed with respect to reproducibility using the intraclass correlation coefficient (ICC). Results: In normal eyes, there was no significant difference in the measurements obtained with the RT, GAT, and NCT (p > 0.050). In the patient group, the RT measurements were not significantly different from those of the GAT (p = 0.872), but they were significantly lower than those obtained with the NCT (p = 0.011). However, the RT measurements showed a relatively high correlation with those of the GAT and NCT (r = 0.770 and 0.879, respectively). The ICC of the RT was 0.986 for the PKP eye group and 0.961 for the normal eye group, both of which were highly reproducible. Conclusions: In PKP eyes, the measurements obtained with the RT showed a relatively high correlation with those of the GAT and NCT, and the repeatability of the RT measurements was high and similar to those for normal eyes. The RT can therefore be considered a useful method for measuring the IOP in PKP eyes.

Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS (실시간 GPS를 이용한 고효율 GPR CMP 탐사)

  • Onishi Kyosuke;Yokota Toshiyuki;Maekawa Satoshi;Toshioka Tetsuma;Rokugawa Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • The main purpose of this paper is to describe a highly efficient common mid-point (CMP) data acquisition method for ground-penetrating radar (GPR) surveying, which is intended to widen the application of GPR. The most important innovation to increase the efficiency of CMP data acquisition is continuous monitoring of the GPR antenna positions, using a real-time kinematic Global Positioning System (RTK-GPS). Survey time efficiency is improved because the automatic antenna locating system that we propose frees us from the most time-consuming process-deployment of the antenna at specified positions. Numerical experiments predicted that the data density and the CMP fold would be increased by the increased efficiency of data acquisition, which results in improved signal-to-noise ratios in the resulting data. A field experiment confirmed this hypothesis. The proposed method makes GPR surveys using CMP method more practical and popular. Furthermore, the method has the potential to supply detailed groundwater information. This is because we can convert the spatially dense dielectric constant distribution, obtained by using the CMP method we describe, into a dense physical value distribution that is closely related to such groundwater properties as water saturation.

Introduction to Useful Attributes for the Interpretation of GPR Data and an Analysis on Past Cases (GPR 자료 해석에 유용한 속성들 소개 및 적용 사례 분석)

  • Yu, Huieun;Joung, In Seok;Lim, Bosung;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.113-130
    • /
    • 2021
  • Recently, ground-penetrating radar (GPR) surveys have been actively employed to obtain a large amount of data on occurrences such as ground subsidence and road safety. However, considering the cost and time efficiency, more intuitive and accurate interpretation methods are required, as interpreting a whole survey data set is a cost-intensive process. For this purpose, GPR data can be subjected to attribute analysis, which allows quantitative interpretation. Among the seismic attributes that have been widely used in the field of exploration, complex trace analysis and similarity are the most suitable methods for analyzing GPR data. Further, recently proposed attributes such as edge detecting and texture attributes are also effective for GPR data analysis because of the advances in image processing. In this paper, as a reference for research on the attribute analysis of GPR data, we introduce the useful attributes for GPR data and describe their concepts. Further, we present an analysis of the interpretation methods based on the attribute analysis and past cases.

Mid- to Late Holocene Progradational Pattern of Shinduri Dunefield: Implications for Sea Level and Climatic Changes in the Western Coast of Korea (홀로세 중기 이후 신두리 해안사구의 성장 : 기후변화 및 해수면 변동과의 관련 가능성)

  • HONG, Seongchan;CHOI, Jeong Heon;KIM, Jong Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • There have been growing concerns for the sea level rise due to global warming in recent years. Sea level rise is a serious problem to densely populated coastal areas, because it may affect the coastal landforms to be damaged. Especially coastal sand deposits like coastal dunes are more sensitive than the other coastal landforms. In this paper, Ground Penetrating Radar (GPR) and Optically Stimulated Luminescence (OSL) dating method were used to identify the Holocene geomorphic changes of coastal dune field in Shinduri located at the western coast. The main results in this study that are the dunefield in the study area may have begun to form at around 6.8 ka and it has grown seaward thereafter. Then, dunefield appears to have extensively developed since 3.7 ka. This result, together with previous works on the sea level and climatic changes in the western coast of Korea suggest that the dunefield has been affected by the sea level regression since the Holocene high stand in the Holocene at around 6 ka and climatic change from warm and humid to cold and dry conditions occurred at 4.5 ka.

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach (FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석)

  • Ryu, Hee-Hwan;Bae, Joo-Yeol;Song, Ki-Il;Lee, Sang-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.75-91
    • /
    • 2023
  • In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.