• Title/Summary/Keyword: penalized

Search Result 166, Processing Time 0.022 seconds

VARIABLE SELECTION VIA PENALIZED REGRESSION

  • Yoon, Young-Joo;Song, Moon-Sup
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.7-12
    • /
    • 2005
  • In this paper, we review the variable-selection properties of LASSO and SCAD in penalized regression. To improve the weakness of SCAD for high noise level, we propose a new penalty function called MSCAD which relaxes the unbiasedness condition of SCAD. In order to compare MSCAD with LASSO and SCAD, comparative studies are performed on simulated datasets and also on a real dataset. The performances of penalized regression methods are compared in terms of relative model error and the estimates of coefficients. The results of experiments show that the performance of MSCAD is between those of LASSO and SCAD as expected.

  • PDF

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

Non-convex penalized estimation for the AR process

  • Na, Okyoung;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.453-470
    • /
    • 2018
  • We study how to distinguish the parameters of the sparse autoregressive (AR) process from zero using a non-convex penalized estimation. A class of non-convex penalties are considered that include the smoothly clipped absolute deviation and minimax concave penalties as special examples. We prove that the penalized estimators achieve some standard theoretical properties such as weak and strong oracle properties which have been proved in sparse linear regression framework. The results hold when the maximal order of the AR process increases to infinity and the minimal size of true non-zero parameters decreases toward zero as the sample size increases. Further, we construct a practical method to select tuning parameters using generalized information criterion, of which the minimizer asymptotically recovers the best theoretical non-penalized estimator of the sparse AR process. Simulation studies are given to confirm the theoretical results.

A new classification method using penalized partial least squares (벌점 부분최소자승법을 이용한 분류방법)

  • Kim, Yun-Dae;Jun, Chi-Hyuck;Lee, Hye-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.931-940
    • /
    • 2011
  • Classification is to generate a rule of classifying objects into several categories based on the learning sample. Good classification model should classify new objects with low misclassification error. Many types of classification methods have been developed including logistic regression, discriminant analysis and tree. This paper presents a new classification method using penalized partial least squares. Penalized partial least squares can make the model more robust and remedy multicollinearity problem. This paper compares the proposed method with logistic regression and PCA based discriminant analysis by some real and artificial data. It is concluded that the new method has better power as compared with other methods.

Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models (다수준 프레일티모형 변수선택법을 이용한 다기관 방광암 생존자료분석)

  • Kim, Bohyeon;Ha, Il Do;Lee, Donghwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.499-510
    • /
    • 2016
  • It is very important to select relevant variables in regression models for survival analysis. In this paper, we introduce a penalized variable-selection procedure in multi-level frailty models based on the "frailtyHL" R package (Ha et al., 2012). Here, the estimation procedure of models is based on the penalized hierarchical likelihood, and three penalty functions (LASSO, SCAD and HL) are considered. The proposed methods are illustrated with multi-country/multi-center bladder cancer survival data from the EORTC in Belgium. We compare the results of three variable-selection methods and discuss their advantages and disadvantages. In particular, the results of data analysis showed that the SCAD and HL methods select well important variables than in the LASSO method.

Relative Error Prediction via Penalized Regression (벌점회귀를 통한 상대오차 예측방법)

  • Jeong, Seok-Oh;Lee, Seo-Eun;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1103-1111
    • /
    • 2015
  • This paper presents a new prediction method based on relative error incorporated with a penalized regression. The proposed method consists of fully data-driven procedures that is fast, simple, and easy to implement. An example of real data analysis and some simulation results were given to prove that the proposed approach works in practice.

PENALIZED APPROACH AND ANALYSIS OF AN OPTIMAL SHAPE CONTROL PROBLEM FOR THE STATIONARY NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • This paper is concerned with an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. by introducing an artificial compressibility term to relax the incompressibility constraints, we take the penalty method. The existence of optima solutions for the penalized problem will be shown. Next, by employing Lagrange multipliers method and the material derivatives, we derive the shape gradient for the minimization problem of the shape functional which represents the viscous drag.

  • PDF

Variable selection in L1 penalized censored regression

  • Hwang, Chang-Ha;Kim, Mal-Suk;Shi, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.951-959
    • /
    • 2011
  • The proposed method is based on a penalized censored regression model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log likelihood function of censored regression model. It provide the efficient computation of regression parameters including variable selection and leads to the generalized cross validation function for the model selection. Numerical results are then presented to indicate the performance of the proposed method.

EM Algorithm-based Segmentation of Magnetic Resonance Image Corrupted by Bias Field (바이어스필드에 의해 왜곡된 MRI 영상자료분할을 위한 EM 알고리즘 기반 접근법)

  • 김승구
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.305-319
    • /
    • 2003
  • This paper provides a non-Bayesian method based on the expanded EM algorithm for segmenting the magnetic resonance images degraded by bias field. For the images with the intensity as a pixel value, many segmentation methods often fail to segment it because of the bias field(with low frequency) as well as noise(with high frequency). Our contextual approach is appropriately designed by using normal mixture model incorporated with Markov random field for noise-corrective segmentation and by using the penalized likelihood to estimate bias field for efficient bias filed-correction.

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.