• 제목/요약/키워드: pem

검색결과 500건 처리시간 0.024초

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

고분자전해질형 연료전지 가스확산층의 내구 성능 저하에 관한 실험적 분석 (Experimental Analysis of GDL Degradation in PEM Fuel Cell)

  • 하태훈;박재만;조준현;김한상;민경덕;이은숙;정지영;김도훈;진용원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.132-132
    • /
    • 2009
  • To achieve the commercialization of PEM fuel cell, the durability problem must be solved. Recently, many researchers have focused on this durability problem and degradation studies about membrane and electrode have been reported. But durability characteristics of gas diffusion layer is not much reported yet. Durability of GDL is very important to maintain the performance of PEM fuel cell because the main function of GDL is a path of fuel and water and the GDL degradation causes the loss of the GDL function. In this study, the degradation of GDL, especially, the mechanical degradation process was investigated with the leaching test. The effect of water dissolution was observed through the test and the amount of GDL degradation was measured with various measurement methods such as weight measurement, static contact angle measurement, scanning electron microscope. After 2,000 hours test, the GDL showed structural damage and loss of hydrophobicity.

  • PDF

당량비 조건에 따른 PEM 단위 연료전지의 과도 응답 특성 및 공기극 플러딩 연구 (Transient response of unit PEMFC with the visualization study of cathode flooding under different stoichiometries)

  • 조준현;김한상;민경덕
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.24-30
    • /
    • 2007
  • The transient response of PEMFC (proton exchange membrane fuel cell) is important criteria in the application of PEM fuel cell to real automotive system. In this work, using a transparent unit PEM fuel cell, the transient response and cathode flooding during load change are investigated. The cell voltage is acquired according to the current density change($0.3Acm^2$ to $0.6A/cm^2$) under various stoichiometry conditions and different flooding intensities, Also the cathode gas channel images are obtained by CCD imaging system simultaneously. The different level of undershoots appeared at the moment of load changes under different cathode stoichiometries and flooding intensities. It takes about 1s that the product water comes up onto the flow channel so that oxygen supply is temporarily blocked which causes voltage loss in that "undershoot". The correlation of the dynamic behavior with stoichiometry and cathode flooding is induced from the results of these experiments.

  • PDF

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

변형된 PEM 그래디언트 알고리즘을 이용한 디지털화상처리에 관한 연구 (A Study of Digital Image Restoration for Modified PEM Gradient Algorithm)

  • 송민구
    • 한국정보처리학회논문지
    • /
    • 제7권1호
    • /
    • pp.313-320
    • /
    • 2000
  • PEM 알고리즘은 패널티 함수가 초월함수 형태일 때에는 반복알고리즘을 전개할 수 가 없다. 하지만, OSL 알고리즘은 복잡한 초월함수 형태의 패널티 함수가 주어지더라도 쉽게 반복 알고리즘이 유도되는 장점을 갖는다. 그러나 이 알고리즘은 패널티 로그-우도를 증가시키는 평활상수의 수렴영역이 제한적이어서 디지털 화상복원시 다양한 평활상수 값을 부여할 수 없기 때문에 최적의 복원화상을 얻을 수 가 없다. 본 논문에서는 OSL 알고리즘의 단점을 해결하기 위해서, 수렴 허용 범위가 확대된 평활상수를 갖는 알고리즘을 제시하고 그 수렴성질을 밝히며, 화상실험을 통해 제안된 알고리즘의 유용성을 밝힌다.

  • PDF

가정용 고분자 연료전지의 모델과 특성해석 (The characteristic analysis and model of PEM fuel cell for residential application)

  • 조영래;김남화;한경희;주경돈;윤신용;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.277-279
    • /
    • 2005
  • The imbalance of energy demand and supply caused by rapid industrialization around the world and the associated environmental issues require and alternative energy source with possible renewable fuels. Political instability and depletion of cruel oils are other factors that cause fluctuation of oil price. Securing a new alternative energy source for the next century became an urgent issue that our nation is confronting with. As a matter of fact, the fuel cell technology can be widely used as next generation energy regardless of regions and climate. Specially, the ability of expansion and quick installation enable one to apply it for distributed power, where the technology is already gaining remarkable attentions for the application. Particularly, leading industrialized nations are focusing on the PEM fuel dell with anticipation that this technology will find their place of applications in the vehicles and homes. In this study, demonstrate the multi physics modeling of a proton exchange membrane(PEM) fuel cell with interdigitated flow field design. The model uses current balances, mass balance(Maxwell-Stefan diffusion for reactant, water and nitrogen gas) and momentum balance(gas flow) to simulate the PEM fuel cell behavior.

  • PDF

고분자 전해질 연료전지용 분리판 최적 설계 (Optimal Design of Bipolar-Plates for a PEM Fuel Cell)

  • 한인수;정지훈;임종구;임찬;정광섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source

  • Dang, Tri Dung;Do, Tri Cuong;Truong, Hoai Vu Anh;Ho, Cong Minh;Dao, Hoang Vu;Xiao, Yu Ying;Jeong, EunJin;Ahn, Kyoung Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.45-53
    • /
    • 2019
  • The objective of this study was to design and model the PEM fuel cell excavator with supercapacitor/battery hybrid power source to increase efficiency as well as eliminate greenhouse gas emission. With this configuration, the system can get rid of the internal combustion engine, which has a low efficiency and high emission. For the analysis and simulation, the governing equations of the PEM system, the supercapacitor and battery were derived. These simulations were performed in MATLAB/Simulink environment. The hydraulic modeling of the excavator was also presented, and its model implemented in AMESim and studied. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software. The simulation results were presented to show the performance of the system.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.