• Title/Summary/Keyword: pem

Search Result 500, Processing Time 0.022 seconds

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

CFD Analysis on a Flow Channel of a Bipolar Plate with Varying Cross-sectional Area in a PEM Fuel Cell (PEM 연료전지용 Bipolar Plate의 변화단면 유로에 대한 CFD 해석)

  • Yang, Dong-Jin;Park, Woon-Jean
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2007
  • A flow channel model of a bipolar plate with varying cross-sectional area was newly designed for improving performance and efficiency of a PEM fuel cell stack. As a result, the varying cross-sectional area model showed poor uniformity in velocity distribution, however, maximum velocity in the flow path is about 30% faster than that of the uniform cross-sectional area model. The proposed varying cross-sectional area model is expected to diffuse operating fluids more easily into diffusion layer because it has relatively higher values in pressure distribution compared with other flow channel models. It is expected that the implementation of the varying cross-sectional area model can reduce not only the mass transport loss but also the activation loss in a PEM fuel cell, and open circuit voltage of a fuel cell can thus be increased slightly.

  • PDF

CFD analysis on the behavior of liquid water in flow channel of PEM fuel cell (PEM 연료전지 유로에서 물의 거동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.23-26
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid (VOF) multi-phase model is conducted to understand the transport behavior of liquid water in flow channel. The liquid water transport in $180^{\circ}$ bends is investigated and the effect of chamfering is discussed. The effect of wall adhesion is also considered by varying the contact angle of channel surfaces. The result of this study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2227-2230
    • /
    • 2008
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen accumulates in anode recirculation system and excessive buildup of nitrogen in the recirculating anode gas lowers the hydrogen concentration and finally affects the performance of fuel cell stacks. In this study, characterization of nitrogen gas crossover was investigated in PEM fuel cell stacks. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen at the exit of anode. Results show that anode and cathode stoichiometric number ($SR_c$) have a big effect of nitrogen crossover.

  • PDF

Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems

  • Kim, Eung-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.891-897
    • /
    • 2012
  • In this paper, the observer based nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using the Lyapunov's stability analysis strategy.

Occupant's Thermal Comfort and Heat Gains in CR by PEM (개별공조에 의한 CR에서의 Heat Gain과 재실자 온열성 연구)

  • 김원태
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.13-18
    • /
    • 1999
  • 기존의 공조방식 및 본 연구에서 제안한 개별환경제어시스템(PEM)으로부터 열유체 유동 헤석용 PHOENICS 프로그램을 이용하여 3차원 시뮬레이션을 수행하여 재실자가 거주하고 있는 CR(컴퓨터실)에서의 Heat Gain과 재실자 온열성 특성을 감성공학적 측면에서 분석하였다. 본 연구로부터 바닥으로부터 공기를 유입하여 천정으로 유출하는 바닥취출공조방식이 실내 환경 개선에 유리하고 diffuser만을 통하여 공기가 유입되어 천정과 바닥으로 공기가 유출되는 PEM 방식은 열적 냉각 성능은 좋으나 PC와 재실자 주변에 강력한 재순환 유동이 발생되어 실내 환경의 쾌적성 측면에서는 불리하나 PEM과 TAM방식의 결합이 감성공학적 온열특성 분포로부터 CR실의 재실자 주변 온도 분포에 최적임을 알 수 있다.

  • PDF

Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell (PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구)

  • Kim, Bok-Yung;Kim, Han-Sang;Min, Young-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

Recent Advances in Catalyst Materials for PEM Water Electrolysis

  • Paula Marielle Ababao;Ilwhan Oh
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.2
    • /
    • pp.19-34
    • /
    • 2023
  • Due to the intermittency of renewable energy sources, a need to store and transport energy will increase. Hydrogen production through water electrolysis will provide an excellent way to supplement the intermittency of renewable energy sources. While alkaline water electrolysis is currently the most mature technology, it has drawbacks of low current density, large footprint, gas crossover, etc. The PEM water electrolysis has potential to replace the alkaline electrolysis. However, expensive catalyst material used in the PEM electrolysis has been the bottleneck of widespread use. In this review, we have reviewed recent efforts to reduce catalyst loading in PEM water electrolysis. In core-shell nanostructures, the precious metal catalyst forms a shell while heteroatoms form a core. In this way, the catalyst loading can be significantly reduced while maintaining the catalytic activity. In another approach, a corrosion-resistant support is utilized, which provides a stable platform to impregnate precious metal catalyst.

Potential Predictors of Sensitivity to Pemetrexed as First-line Chemotherapy for Patients with Advanced Non-Squamous NSCLCs

  • Lu, Yan-Yan;Huang, Xin-En;Xu, Lin;Liu, De-Gan;Cao, Jie;Wu, Xue-Yan;Liu, Jin;Xiang, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2005-2008
    • /
    • 2013
  • Background: Pemetrexed (PEM) is effective in first-line treatment for patients with non-squamous non-small cell lung cancer (NSCLC). However there are currently no definitive determinants to certify which patients could benefit from PEM. To improve the efficacy of PEM combined with platinum as first-line therapy for advanced non-squamous NSCLC, we conducted this retrospective study to detect potential determinants of this regimen. Methods: We recruited 109 patients with advanced non-squamous NSCLC who received PEM with a platinum as first-line therapy from June 2006 to February 2013 in Jiangsu Cancer Hospital. Multiple variables (age, sex, smoking, degree of cell differentiation, hemoglobin, platinum drugs combined, positions of metastasis) were selected. Logistic regression analysis was used to analyse relationships between these variables and tumor response. Result: In univariate analysis, we found that age and platinum significantly influenced the results of PEM therapy (P<0.05). In multivariable analysis, no factors were independently significant. Conclusion: Our analysis did not suggest that the age, sex, metastasis of liver or other organs, hemoglobin, smoking history and pathological differentiation are associated with the response of PEM. We should conduct further analyses with larger sample size to reconfirm this issue.