• Title/Summary/Keyword: peel strain

Search Result 29, Processing Time 0.032 seconds

Studies on the Production of Fermented Feeds from Agricultural Waste Products (Part Ⅲ) -On the Production of Cellulase by Aspergillus niger and Trichoderma viride- (농산폐기물(農産廢棄物)에서 발효사료(醱酵飼料)의 생산(生産)에 관(關)한 연구(硏究)[제3보(第三報)] -Aspergillus niger와 Trichoderma viride에 의(依)한 Cellulase의 생산성(生産性)에 관(關)하여-)

  • Lee, Ke-Ho;Koh, Jeong-Sam;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.130-138
    • /
    • 1976
  • In order to utilize the agricultural waste products, two strains of mold producing powerful cellulolytic enzyme were sereened from various soils, composts, rotten wood and others. The optimum condition of cellulase production was studied. The results obtained were summarized as follows. 1. Two strains of mold which showed remarkably high cellulolytic activity were identified as Aspergillus niger-SM 6 and Trichoderma viride-SM 10. 2. The highest cellulase production was obtained at pH 5.0-6.0 in 5 days. 3. Cellulase production in strain Aspergillus niger-SM 6 increased with the addition of C.M.C., $(NH_4)_2SO_4$, C.S.L., orange peel powder and rice hull. The rice hull, treated with 3N NaOH at $120^{\circ}C$ for 15 min. and neutralized with various acids, was used. Up to 50% of wheat bran could be substituted by the treated rice hull without any decrease of cellulase activity. 4. In the strain of Trichoderma viride-SM 10, cellulase production increased with the addition of C.M.C., $NH_4NO_3$, Vitamin-free casamino acid and orange peel powder, while the other carbon, nitrogen, phosphate sources, natural nutrients and organic substances gave no remarkable effect.

  • PDF

Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites

  • Mishra, P.K.;Pradhan, A.K.;Pandit, M.K.;Panda, S.K.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.439-447
    • /
    • 2020
  • This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded Spar Wingskin Joints made with laminated Graphite Fiber Reinforced Plastic composites. The study emphasizes the influence of residual thermal stresses and material anisotropy on the inter-laminar delamination behavior of the joint structure. The delamination has been pre-embedded at the most likely location, i.e., in resin layer between the top and next ply of the fiber reinforced plastic laminated wingskin and near the spar overlap end. Multi-Point Constraint finite elements have been made use of at the vicinity of the delamination fronts. This helps in simulating the growth of the embedded delamination at both ends. The inter-laminar thermoelastic peel and shear stresses responsible for causing delamination damage due to a combined thermal and a static loading have been evaluated. Strain energy release rate components corresponding to the Mode I (opening), Mode II (sliding) and Mode III (tearing) of delamination are determined using the principle of Virtual Crack Closure Technique. These are seen to be different and non-self-similar at the two fronts of the embedded delamination. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Flexible Durability of Ultra-Thin FPCB (초박형 FPCB의 유연 내구성 연구)

  • Jung, Hoon-Sun;Eun, Kyoungtae;Lee, Eun-Kyung;Jung, Ki-Young;Choi, Sung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.69-76
    • /
    • 2014
  • In this study, we developed an ultra-thin flexible printed circuit board(FPCB) using the sputtered flexible copper clad laminate. In order to enhance the adhesion between copper and polyimide substrate, a NiMoNb addition layer was applied. The mechanical durability and flexibility of the ultra-thin FPCB were characterized by stretching, twisting, bending fatigue test, and peel test. The stretching test reveals that the ultra-thin FPCB can be stretched up to 7% without failure. The twisting test shows that the ultra-thin FPCB can withstand an angle of up to $120^{\circ}$. In addition, the bending fatigue test shows that the FPCB can withstand 10,000 bending cycles. Numerical analysis of the stress and strain during stretching indicates the strain and the maximum von Mises stress of the ultra-thin FPCB are comparable to those of the conventional FPCB. Even though the ultra-thin FPCB shows slightly lower durability than the conventional FPCB, the ultra-thin FPCB has enough durability and robustness to apply in industry.

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Citrus Wine-making from Mandarin Orange Produced in Cheju Island (제주도산(濟州道産) 감귤발효주(柑橘醱酵酒)의 양조특성(釀造特性))

  • Koh, Jeong-Sam;Koh, Nam-Kwon;Kang, Soon-Sun
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.416-423
    • /
    • 1989
  • In order to produce clear and favorable citrus wine from Citrus unshiu produced in Cheju island, chemical and microbiological processes for alcoholic fermentation were investigated. The ratio of pressed juice passed below 100 mesh sieve and peel of mandarin orange were 55.9% and 25.6% respectively. Orange juice for fermentation source contained 8.85% total sugar, 1.43% total acid and 0.056% volatile acid. Pressed juice was adjusted to 24 degree Brix with cane sugar, and was fermented at $20^{\circ}C$ for one month. Starter screened and selected was Saccharomyces cerevisiae IAM 4274. As principal fermentation proceeded for one week, suspended solids began to precipitate slowly after then. After fermentation, clear citrus wine consisted of about 8 degree Brix residual sugar, $13.3{\sim}14.4%$ ethanol, $0.78{\sim}1.11%$ total acid, $0.05{\sim}0.07%$ methanol and $2.25{\sim}3.29%$ extract, was obtained. Color, flavor and taste of citrus wine found good with panel test. Citrus wine which was treated with fungal enzyme derived from Aspergillus niger CCM-4 was cleared much faster, and could be filtered more rapidly than the untreated. The enzyme-producing strain was isolated from field soil of Cheju island and identified.

  • PDF

Studies on the Hesperidinase of Aspergillus niger S-1 (Aspergillus niger S-1이 생산하는 Hesperidin 분해효소에 관한 연구)

  • 기우경
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.131-137
    • /
    • 1976
  • Aspergillus niger S-1 was proved to be a good hesperidinase producer which have been selected for naringinase utilization. Enzyme of this strain had good characteristics and purified relative high degree with good recovery by ammonium sulfate or aceton treatment. Results obtained were summarized as follows (1) The enzyme was most active at 60$^{\circ}C$, when the reaction was performed in the pH 4.0 for 30min. Optimum pH for enzyme activity was 5.0 and activity was retained 78% at pH value 3.5. (2) Hesperidinase activity retained 95% of its full activity after treatment at 60$^{\circ}C$ for 30min at pH value 4.0., 70% at 70$^{\circ}C$ and 65% at 80$^{\circ}C$. Most stable pH of this enzyme was showed 5.0 after treatment for 24hr at 4$^{\circ}C$ (3) Only Magnesium ion activated enzyme reaction, while other metallic ions, Cu$\^$++/, Mn$\^$++/, Pb$\^$++/, Mo$\^$++/, Ag$\^$++/, Hg$\^$++/ inhibited. (4) Eleven fold purification with 35% recovery was obtained in the case of 60% aceton treatment and 10-fold purification with 5.6% recovery was showed with 40% aceton comparing to the crude extract Enzyme. (5) Crude enzyme precipitated with 0.4-0.6 saturated ammonium sulfate contained 13f6 of the original enzyme activity with 48-fold increase in specific activity and enzyme has been purified 25 fold with a yield 19% by 0.6-5.8 saturation. (6) Hesperidinase formation was noticeably increased by addition of small amount of orange-peel extraction on the wheat bran medium.

  • PDF

Studies on the Cellulase Producing Microorganisms(Part I) -Isolation of the Cellulase Producing Molds and their Cultural Conditions- (Cellulase 생성균(生成菌)에 관(關)한 연구(硏究) (제1보(第1報)) -유용균(有用菌)의 분리(分離) 및 그 배양조건(培養條件)에 대(對)하여-)

  • Kim, Chan-Jo;Choi, Woo-Young
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.83-88
    • /
    • 1969
  • 94 Cellulase producing strains were isoated from soils, composts, rotten woods and straws, and gastric contents and feces of herbivorous animals in various places. Among them, the strain MC-9, MC-10, MC-53 and MC-61 were found to be highly active in the degradation of carboxy methyl cellulose. Their cultural conditions adequate for the cellulase formation and effects of inorganic salts and various organic substances added to the wheat bran media were investigated. The results obtained are as follows; 1. Optimum conditions for the cellulase formation were MC-9: pH 5.5, temp. $35^{\circ}C$, incubation time 5 days, MC-10: pH 5.5-6.0, temp. $30^{\circ}C$, incubation time 5 days, MC-53: pH 3.5, temp. $30^{\circ}C$, incubation time 5 days, MC-61: pH 3.5-4.0, temp. 30-$35^{\circ}C$, incubation time 5 days. 2. Their cellulase activity in their optimum conditions were MC-9: CMC-LP(liquefying power). 87.7%, CMC-SP(saccharifying power) 3.20 glucose mg./gm. of the cultures/min., MC-10: CMC-LP 82.9%, CMC-SP 2.48 glucose mg./gm. of the cultures/min., MC-53: CMC-LP 72.4%, CMC-SP 1.76 glucose mg./gm. of the cultures/min., MC-61: CMC-LP 87.1%, CMC-SP 2.08 glucose mg./gm. of the cultures/min. 3. Additions of inorganic salts to the wheat bran media were not significant for the cellulase formation, but additions of soybean film and orange-peel pomace promoted the CMC-liquefying power 3 to 5 percent in wheat bran cultures of the strains.

  • PDF