• Title/Summary/Keyword: pedestrian-vehicle accident

Search Result 83, Processing Time 0.026 seconds

A Study on the Relationship between Impact Point of Vehicle and Throw Distance of Pedestrian (충격 지점과 보행자 전도 거리의 상관관계에 관한 연구)

  • Kang, Dae-Min;Ahn, Seung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.71-76
    • /
    • 2007
  • The fatalities of pedestrian account for about 40.0% of all fatalities in Korea 2005. Vehicle-Pedestrian accident generates trajectory of pedestrian. In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables. The variables that influence trajectory of pedestrian can be classified into vehicular factors, pedestrian factors, and road factors. Vehicular factors are the frontal shape of vehicle, impact speed of vehicle, the offset of impact point. Many studies have been done about the relation between impact speed and throw distance of pedestrian. But the influence of the offset of impact point was neglected. The influence of the offset of impact point was analyzed by Working Model, and the trajectory of pedestrian, dynamic characteristics of multi-body were analyzed by PC-CRASH, a kinetic analysis program for a traffic accident. Based on the results, the increase of offset reduced the throw distance of pedestrian. However box type vehicle just like bus, the offset of impact point did not influence the throw distance of pedestrian considerably.

  • PDF

Development of Accident Analysis Model in Car to Pedestrian Accident (차 대 보행자 충돌시 사고해석 모델개발)

  • Kang, Dae-Min;Ahn, Seung-Mo;An, Jung-O
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.104-109
    • /
    • 2010
  • The fatality of pedestrian accounts for about 21.2% of all fatality at 2007 year in Korea. In car to pedestrian accident it is very important to inspect the throw distance of pedestrian after collision for exact reconstructing of the accident. The variables that influence on the throw distance of pedestrian can be classified into the factors of vehicle and pedestrian, and road condition. It was simulated by PC-CRASH, a kinetic analysis program for a traffic accident in sedan type vehicle and SPSS program was used for regression analysis. From the results, the throw distance of pedestrian increased with the increasing of vehicle velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and throw distance at the road condition of wet was longer than that at dry condition. Finally, the regression model of sedan type vehicle on the throw distance of pedestrian was as follows; $$dist_i=2.39-0.11offset_i+0.59speed_i-545height_i-0.25walk_i+2.78wet_i+{\epsilon}_i$$.

Development of Accident Analysis Model in Car to Pedestrian Accident (차 대 보행자 충돌 시 사고해석 모델 개발)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.76-81
    • /
    • 2009
  • The fatalities of pedestrian account for about 21.2% of all fatalities at 2007 year in Korea. To reconstruct exactly the accident, it is important to calculate the throw distance of pedestrian in car to pedestrian accident. The frontal shape of SUV vehicle is dissimilar to passenger car and bus, so the trajectory and throw distance of pedestrian by SUV vehicle is not the same of passenger car and bus. The influencing on it can be classified into the factors of vehicle and pedestrian, and road factor. It was analyzed by PC-CRASH for simulation, and SPSS s/w was used for regression analysis. From the simulation results, the maximum impact energy of multi-body of pedestrian was occurred to that of torso body at the same time. And the throw distance increased with the increasing of impact velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and the throw distance of wet road was longer than that of dry road. Finally, the regression analysis model of SUV(Nissan Pathfinder type)vehicle in car to pedestrian accident was as follows; $$disti_i=-0.87-0.11offseti_i+0.69speed_i-4.27height_i+0.004walk_i+0.63wet_i+{\epsilon}_i$$.

  • PDF

Analytical Model in Pedestrian Accident by Van Type Vehicle (Van 형 차량의 보행자 충돌 사고 해석 모델)

  • Ahn, Seung-Mo;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.115-120
    • /
    • 2008
  • The fatalities of pedestrian accounted for about 40.0% of all fatalities in Korea (2005 year). In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables, such as vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, and road condition. The trajectory of pedestrian after collision can be influenced by vehicular frontal shape classified into sedan type, box type, SUV type and van type. Many studies have been done about pedestrian accident with passenger car model and bus model for simple factors. But the study of pedestrian accident by van type vehicle was much insufficient, and even that the influence of multiple factors such as the offset of impact point was neglected. In this paper, a series of pedestrian kinetic simulation were conducted to inspect relationship between throw distance and multiple factors with using PC-CRASH s/w, a kinetic analysis program for a traffic accident for van type. By based on the simulation results, multi-variate regression was conducted, and regression equation was presented.

  • PDF

A Study on the Factors that Influence the Throw Distance of Pedestrian on the Vehicle-Pedestrian Accident (보행자의 층돌 사고에서 보행자 전도거리에 영향을 주는 인자에 관한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.56-62
    • /
    • 2009
  • The fatalities of pedestrian account for about 40.0% of all fatalities in Korea 2005. Vehicle-Pedestrian accident generates trajectory of pedestrian. In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables. But existing studies have been done for simple factors. The variables that influence trajectory of pedestrian can be classified into vehicular factors, pedestrian factors, and road factors. The trajectory of pedestrian, dynamic characteristics of multi-body were analyzed by PC-CRASH, a kinetic analysis program for a traffic accident. PC-CRASH enables an analyst to investigate the effect of many variables. The influence of the offset of impact point was analyzed by Working Model. Based on the results, the variables that influence trajectory of pedestrian were vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, friction coefficients of pedestrian. However the weight of pedestrian did not affect trajectory of pedestrian considerably.

  • PDF

Severity Analysis for Vulnerable Pedestrian Accident Utilizing Vehicle Recorder Database of Taxi (택시 영상DB를 활용한 교통약자 보행자 사고의 심각도 분석)

  • Chung, JaeHoon;Sul, Jaehoon;Choi, SungTaek;Rho, JeongHyun;Lee, Jisun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.98-106
    • /
    • 2014
  • This study proposes severity analysis for pedestrian accidents by improving variables which were used for general severity analysis. The existing variables were collected based on the interviews with policeman or witnesses and evidence of accidents. Therefore, existing variables were subjective and had several measurement errors. In order to improve such problems, this study collected variables from vehicle recorder of taxi which recorded the moment of accidents. As a result, explanatory power of independent variables was enhanced and the complete objective variables could be collected. After collecting variables, ordered probit model was developed by utilizing vehicle recorder database. Fitness of ordered probit model was 0.23. Vehicle speed and pedestrian's eye direction variables were the most critical factors for severity of pedestrian accident. In addition, severity analysis for vulnerable pedestrian was carried out. As a result, it was revealed that vehicle speed, pedestrian's eye direction and safety zone variables affected the severity of pedestrian accidents most. Particularly, vehicle speed variable is the most important factor. Consequently, driver's defensive driving and compliance to the regulations are the priority to reduce severity of pedestrian accidents and prevent pedestrian accident.

Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed (차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

Upper Legform Impact Test of the EURO-NCAP Protocol using a Pedestrian Dummy Model (보행자 더미모델을 이용한 EURO-NCAP 상부다리모형 평가시험 방법에 대한 분석)

  • Park, Sang-ok;Choi, Wook-han;Son, Dae-Geun;Park, Gyung-Jin;Lee, EunDok;Kwon, Hae Boung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.14-19
    • /
    • 2017
  • The mortality rate of car-pedestrian accidents is quite high compared to the frequency of accident. Recently, governments and insurance companies tend to establish and implement new safety standards for pedestrian protection such as EURO-NCAP and K-NCAP. The performance for the pedestrian protection has been gradually improved, but it is still insufficient. Therefore, various studies for the pedestrian protection are being carried out. The car-pedestrian accident is simulated in order to study to the upper legform test of the EURO-NCAP protocol. A pedestrian dummy model is employed and the results are discussed.

Development of a Pedestrian Accident Exposure Estimation Modelconsidering Walking Conflicts (보행상충을 고려한 보행사고 노출 추정 모형 개발)

  • Iljoon Chang;Nam ju Kwon;Se-young Ahn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.54-63
    • /
    • 2023
  • Pedestrian traffic needs to be accurately quantified to predict effectively pedestrian traffic accidents, however, pedestrian traffic is more difficult to measure than vehicle traffic. In this study, we suggest the time-and cost-effective application of mobile closed-circuit television (CCTV) using a smartphone as an alternative that can collect and analyze real-time data with little. In the present investigation, the pedestrian-vehicle conflict that can develop into an accident was defined as the pedestrian accident exposure. After installing mobile CCTV in 40 sections of Dongseong-ro, Daegu, the pedestrian accident exposure was estimated through negative binomial regression analysis using the collected data. The results of the analysis showed statistically significant changes in the pedestrian accident exposure variables. Based on the present results, a pedestrian accident exposure estimation model was developed which can be used in sections where pedestrian accidents may occur.

A Study on Minimum Speed of Vehicle in Collision between Pedestrian Head and Windshield (보행자의 두부(頭部)가 승용차의 전면유리에 닿는 최저속도에 관한 연구)

  • Shim, Jae-kwi;Lee, Sangsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.54-61
    • /
    • 2016
  • This paper try to identify the minimum speed of vehicles in collision between pedestrian head and windshield at vehicle-pedestrian accidents. The MADYMO program was used with NF Sonata vehicle and pedestrian in height of 160cm, 170cm, and 180cm. From the simulation results, it was found that the minimum speed of vehicle was different for each pedestrian height : 49km/h for 160cm, 41km/h for 170cm, and 29km/h for 180cm. The results could be used in speed estimating process when there is a collision trace between pedestrian head and windshield at vehicle- pedestrian accident investigation.