• 제목/요약/키워드: pedestrian accident model

검색결과 67건 처리시간 0.02초

간선도로 기능별 보행사고 심각도 분석과 모형 개발 (Pedestrian Accident Severity Analysis and Modeling by Arterial Road Function)

  • 백태헌;박민규;박병호
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.111-118
    • /
    • 2014
  • PURPOSES: The purposes are to analyze the pedestrian accident severity and to develop the accident models by arterial road function. METHODS: To analyze the accident, count data and ordered logit models are utilized in this study. In pursuing the above, this study uses pedestrian accident data from 2007 to 2011 in Cheongju. RESULTS : The main results are as follows. First, daytime, Tue.Wed.Thu., over-speeding, male pedestrian over 65 old are selected as the independent variables to increase pedestrian accident severity. Second, as the accident models of main and minor arterial roads, the negative binomial models are developed, which are analyzed to be statistically significant. Third, such the main variables related to pedestrian accidents as traffic and pedestrian volume, road width, number of exit/entry are adopted in the models. Finally, Such the policy guidelines as the installation of pedestrian fence, speed hump and crosswalks with pedestrian refuge area, designated pedestrian zone, and others are suggested for accident reduction. CONCLUSIONS: This study analyzed the pedestrian accident severity, and developed the negative binomial accident models. The results of this study expected to give some implications to the pedestrian safety improvement in Cheongju.

토빗모형을 이용한 교차로 보행자 사고모형 개발 (Developing the Pedestrian Accident Models of Intersections using Tobit Model)

  • 이승주;임진강;박병호
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.154-159
    • /
    • 2014
  • This study deals with the pedestrian accidents of intersections in case of Cheongju. The objective is to develop the pedestrian accident models using Tobit regression model. In pursuing the above, the pedestrian accident data from 2007 to 2011 were collected from TAAS data set of Road Traffic Authority. To analyze the accident, Poisson, negative binomial and Tobit regression models were utilized in this study. The dependent variable were the number of accident by intersection. Independent variables are traffic volume, intersection geometric structure and the transportation facility. The main results were as follows. First, Tobit model was judged to be more appropriate model than other models. Also, these models were analyzed to be statistically significant. Second, such the main variables related to accidents as traffic volume, pedestrian volume, number of traffic island, crossing length and the pedestrian countdown signal systems were adopted in the above model.

토빗모형을 이용한 가로구간 보행자 사고모형 개발 (Developing the Pedestrian Accident Models Using Tobit Model)

  • 이승주;김윤환;박병호
    • 한국도로학회논문집
    • /
    • 제16권3호
    • /
    • pp.101-107
    • /
    • 2014
  • PURPOSES : This study deals with the pedestrian accidents in case of Cheongju. The goals are to develop the pedestrian accident model. METHODS : To analyze the accident, count data models, truncated count data models and Tobit regression models are utilized in this study. The dependent variable is the number of accident. Independent variables are traffic volume, intersection geometric structure and the transportation facility. RESULTS : The main results are as follows. First, Tobit model was judged to be more appropriate model than other models. Also, these models were analyzed to be statistically significant. Second, such the main variables related to accidents as traffic volume, pedestrian volume, number of Entry/exit, number of crosswalk and bus stop were adopted in the above model. CONCLUSIONS : The optimal model for pedestrian accidents is evaluated to be Tobit model.

Van 형 차량의 보행자 충돌 사고 해석 모델 (Analytical Model in Pedestrian Accident by Van Type Vehicle)

  • 안승모;강대민
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.115-120
    • /
    • 2008
  • The fatalities of pedestrian accounted for about 40.0% of all fatalities in Korea (2005 year). In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables, such as vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, and road condition. The trajectory of pedestrian after collision can be influenced by vehicular frontal shape classified into sedan type, box type, SUV type and van type. Many studies have been done about pedestrian accident with passenger car model and bus model for simple factors. But the study of pedestrian accident by van type vehicle was much insufficient, and even that the influence of multiple factors such as the offset of impact point was neglected. In this paper, a series of pedestrian kinetic simulation were conducted to inspect relationship between throw distance and multiple factors with using PC-CRASH s/w, a kinetic analysis program for a traffic accident for van type. By based on the simulation results, multi-variate regression was conducted, and regression equation was presented.

  • PDF

차 대 보행자 충돌 시 사고해석 모델 개발 (Development of Accident Analysis Model in Car to Pedestrian Accident)

  • 강대민;안승모
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.76-81
    • /
    • 2009
  • The fatalities of pedestrian account for about 21.2% of all fatalities at 2007 year in Korea. To reconstruct exactly the accident, it is important to calculate the throw distance of pedestrian in car to pedestrian accident. The frontal shape of SUV vehicle is dissimilar to passenger car and bus, so the trajectory and throw distance of pedestrian by SUV vehicle is not the same of passenger car and bus. The influencing on it can be classified into the factors of vehicle and pedestrian, and road factor. It was analyzed by PC-CRASH for simulation, and SPSS s/w was used for regression analysis. From the simulation results, the maximum impact energy of multi-body of pedestrian was occurred to that of torso body at the same time. And the throw distance increased with the increasing of impact velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and the throw distance of wet road was longer than that of dry road. Finally, the regression analysis model of SUV(Nissan Pathfinder type)vehicle in car to pedestrian accident was as follows; $$disti_i=-0.87-0.11offseti_i+0.69speed_i-4.27height_i+0.004walk_i+0.63wet_i+{\epsilon}_i$$.

  • PDF

도시 시설 특성을 반영한 고령 보행자의 사고 심각도 모형 개발 (Development of Severity Model for Elderly Pedestrian Accidents Considering Urban Facility Factor)

  • 최성택;이향숙;추상호;김수재
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.94-103
    • /
    • 2015
  • This study analyzes the influence factors on elderly pedestrian accident. Elderly people are easy to be badly injured by car accidents compared to younger people. Therefore, various plans and measures are required to protect elderly pedestrian from accidents. However, pedestrian accidents studies only focused on microscopic factors such as attribute of driver, pedestrian, road design. In order to prevent pedestrian accident and reduce the severity of the accident, not only microscopic factors but macroscopic variables such as urban planning and facility should be considered. In this regard, this study develops an ordered probit model introduced the characteristics of urban facility which were not considered in the previous studies. The result shows that there is higher level of accident severity in such areas as large commercial area, well-developed area with transportation infrastructure service and non-pedestrian safety zone. Thus, various and appropriate countermeasures should be prepared in order that pedestrian accident can be prevented in the areas mentioned above. In addition to the aforementioned variables, it is revealed that other variables including vehicle speed, gender and age of pedestrian, weather condition, type of vehicle, etc. partly affect the severity of pedestrian accident.

차 대 보행자 충돌시 사고해석 모델개발 (Development of Accident Analysis Model in Car to Pedestrian Accident)

  • 강대민;안승모;안정오
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.104-109
    • /
    • 2010
  • The fatality of pedestrian accounts for about 21.2% of all fatality at 2007 year in Korea. In car to pedestrian accident it is very important to inspect the throw distance of pedestrian after collision for exact reconstructing of the accident. The variables that influence on the throw distance of pedestrian can be classified into the factors of vehicle and pedestrian, and road condition. It was simulated by PC-CRASH, a kinetic analysis program for a traffic accident in sedan type vehicle and SPSS program was used for regression analysis. From the results, the throw distance of pedestrian increased with the increasing of vehicle velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and throw distance at the road condition of wet was longer than that at dry condition. Finally, the regression model of sedan type vehicle on the throw distance of pedestrian was as follows; $$dist_i=2.39-0.11offset_i+0.59speed_i-545height_i-0.25walk_i+2.78wet_i+{\epsilon}_i$$.

보행자의 층돌 사고에서 보행자 전도거리에 영향을 주는 인자에 관한 연구 (A Study on the Factors that Influence the Throw Distance of Pedestrian on the Vehicle-Pedestrian Accident)

  • 강대민;안승모
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.56-62
    • /
    • 2009
  • The fatalities of pedestrian account for about 40.0% of all fatalities in Korea 2005. Vehicle-Pedestrian accident generates trajectory of pedestrian. In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables. But existing studies have been done for simple factors. The variables that influence trajectory of pedestrian can be classified into vehicular factors, pedestrian factors, and road factors. The trajectory of pedestrian, dynamic characteristics of multi-body were analyzed by PC-CRASH, a kinetic analysis program for a traffic accident. PC-CRASH enables an analyst to investigate the effect of many variables. The influence of the offset of impact point was analyzed by Working Model. Based on the results, the variables that influence trajectory of pedestrian were vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, friction coefficients of pedestrian. However the weight of pedestrian did not affect trajectory of pedestrian considerably.

  • PDF

보행자-차량 충돌사고 재현모형 비교분석 및 개선 연구 (A study on Pedestrian Accident Reconstruction Models: Comparison and Improvement)

  • 조정일;오철;김남일;장명순
    • 대한교통학회지
    • /
    • 제25권4호
    • /
    • pp.69-77
    • /
    • 2007
  • 본 연구에서는 보행자-차량 충돌사고 분석을 위한 국내외 사고재현모형을 비교하였다. 충돌 후 보행자의 전도거리를 종속변수로, 차량의 충돌속도를 독립변수로 하는 모형을 비교하였으며, 수집된 총 432건의 사고 자료 중 신뢰성 있는 전도거리와 충돌속도 자료의 확보가 가능한 49건을 선정하여 절대평균백분위오차를 산출 후 비교하였다. 또한 전도거리에 영향을 새로운 변수의 도출을 위해 차량의 전면부 형상을 조사하고 이를 변수화하여 모형 구축에 반영하였다. 분석결과 차량의 범퍼높이가 다른 변수에 비해 전도거리에 큰 영향을 미치는 것으로 나타났다. 향후 연구에서는 보다 폭넓고 많은 데이터 수집 및 분석을 통하여 신뢰성을 높은 모형개발이 이루어져야 할 것이다.

보행자 더미모델을 이용한 EURO-NCAP 상부다리모형 평가시험 방법에 대한 분석 (Upper Legform Impact Test of the EURO-NCAP Protocol using a Pedestrian Dummy Model)

  • 박상옥;최욱한;손대근;박경진;이은덕;권해붕
    • 자동차안전학회지
    • /
    • 제9권4호
    • /
    • pp.14-19
    • /
    • 2017
  • The mortality rate of car-pedestrian accidents is quite high compared to the frequency of accident. Recently, governments and insurance companies tend to establish and implement new safety standards for pedestrian protection such as EURO-NCAP and K-NCAP. The performance for the pedestrian protection has been gradually improved, but it is still insufficient. Therefore, various studies for the pedestrian protection are being carried out. The car-pedestrian accident is simulated in order to study to the upper legform test of the EURO-NCAP protocol. A pedestrian dummy model is employed and the results are discussed.