• Title/Summary/Keyword: pedestrian accident

Search Result 209, Processing Time 0.025 seconds

Analysis on Factors of Traffic Accident on Roads having Width of Less than 9 Meters (폭원 9m 미만 도로 내 교통사고 영향 요인 분석)

  • Lim, You-Jin;Moon, Hak-Ryong;Kang, Won-Pyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.96-106
    • /
    • 2014
  • Necessarily traffic policies have been biased in car than pedestrian, so pedestrian's environment is getting worse. Result of this situation our accident rate is high as 36.4%, compared to OECD member countries with average rate of 17.8%(in 2009). Increasing interest for pedestrians environment improvement, and it make an effort to build environment to guarantee walk and safety of pedestrians. Analysis on the binary logistic regression(BLR) was used. The dependent variable is occurring from the road width of less than 9m accident, and independent variable extracted can be obtained from the traffic accident data. Traffic accident on roads having width of less than 9 meters affecting variables is when the driver is straight, when the driver is female, when the pedestrian is walk driveway, and so on. To prevent it, efforts is demanded to protect handicapped, to build safe pedestrians environment using C-ITS and to decrease speed of going straight vehicle on roads having width of less than 9 meters.

A Study on Practical Method of Utility Curve for Deciding Priority Order of the Improvements in Traffic Safety Audit (교통안전진단 개선방안들의 우선순위 산정 연구)

  • Choi, Ji Hye;Kang, Soon Yang;Hong, Ji Yeon;Lim, Joon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.143-155
    • /
    • 2016
  • Recently, a massive loss of life and property is occurring in Korea due to traffic accidents, with the rapid increase in cars. For improvement of traffic safety, the Korea Transportation Safety Authority intensively analyzes accident data in local governments with low traffic safety index, performs a field investigation to extract problems and offers local governments improvements for problems, by conducting the 'Special Survey of Actual Conditions of Traffic Safety' each year, starting 2008. But local governments cannot strongly push forward the improvement projects due to the limited budget and the uncertainty of the improvement plan effects. Therefore, this study suggested a model which applied the Utility concept to the AHP theory, in order to efficiently decide a priority of the improvement plans in accident black spots in consideration of the limited budget of local governments. The number of accidents in each spot for improvement and accident severity, traffic volume, pedestrian volume, the improvement project cost and the accident reduction effect were chosen as evaluation factors for deciding a priority, and data about the improvement plan costs and the accident reduction effects, traffic accidents and traffic volume in the spots to undergo the special research on the real condition of traffic accident in the past were collected from the existing studies. Then, regression analysis was carried out and the Utility Curve of each evaluation factor was computed. Based on the AHP analysis findings, this study devised a priority decision method which calculated the weight and the utility function of each evaluation factor and compared the total utility values. The AHP analysis findings showed that among the evaluation factors, accident severity had the biggest importance and it was followed by the improvement plan cost, the number of accidents, the improvement effect, traffic volume and pedestrian volume. The calculated utility function shows a rise in utility, as the variables of the 5 evaluation factors; the number of accidents, accident severity, the improvement plan effect, traffic volume and pedestrian volume increase and a fall in utility, as the variables of the improvement plan cost increase, since the improvement plan cost is included in the budget spent by a local government.

A Study on the Cognitive Judgment of Pedestrian Risk Factors Using a Second-hand Mobile Phones (중고스마트폰 업사이클링을 통한 보행위험요인 인지판단 연구)

  • Chang, IlJoon;Jeong, Jongmo;Lee, Jaeduk;Ahn, Se-young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.274-282
    • /
    • 2022
  • In order to secure pedestrians' right to walk, we have up-cycled second hand mobile phones to overcome limitations of the existing survey methods, analysis methods, and diagnosis to reduce pedestrian traffic accidents. Second hand mobile phones were up-cycled to produce mobile CCTVs and installed in areas where pedestrian deaths rate is high to secure image data sets for the period of more than 24 hours. It was analyzed by applying image visualization technology and clouding reporting technology, and more precise and accurate results were derived through modeling based on artificial intelligence learning and GIS-based diagnostic guidance. As a result, it was possible to analyze the risk factors and number of pedestrian safety, and even factors that were not known in the existing method could be derived. In addition, the traffic accident risk index was derived by converting data into one year to verify whether second hand mobile phone up-cycling mobile CCTV will be an objective tool for finding pedestrian risk factors. Up-cycling mobile CCTV of second hand mobile phones newly applied through research can be used as a new tool to find pedestrian risk factors, and it can be used as a service to protect the safety of the traffic vulnerable other than pedestrians.

Analysis of Pedestrian-thrown Distance Pattern by Pedestrian-vehicle Collision Position (보행자와 승용차의 충돌 위치에 따른 전도거리 패턴 분석)

  • Kwon, Sun-min;Chang, Hyun-bong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • This paper investigates pedestrian-thrown distance pattern by pedestrian-vehicle collision position by madymo-simulation. The simulation were performed for every 2.5 cm interval between center and edge of bumper for various vehicle speeds and vehicle shapes. As a result, two critical points where thrown distance change rapidly were found. First critical point locate where pedestrian's shoulder do not contact the vehicle. Second point locate where the center of gravity of pedestrian are close to edge of bumper. Between 1st and 2nd critical points, thrown distance decrease rapidly where collision points move to the edge of vehicle. In other cases, the thrown distance does not change rapidly. This result gives more accurate guideline for pedestrian collision in traffic safety.

Study on the Behavior and Damage of Pedestrian at Car Body Impact (차체 충돌에 있어서의 보행자의 거동 및 손상에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-161
    • /
    • 2011
  • The study for traffic safety improvement is so necessary to minimize the wound of pedestrian at car impact as to prevent pedestrian from this accident. This study aims at analyzing the behavior affected by impact on which car body hits pedestrian. Load and damage of pedestrian are also investigated. This model is the small car body as frame structure. The pedestrian is modeled with dummy by CATIA as Korean standard body style. The ear impacts the side of pedestrian with the speed from 30 to 90km/h. Behavior and damage of pedestrian at impact are analyzed by ANSYS. In case of 30km/h, The maximum pressure of dummy becomes the maximum value of 100MPa after the elapsed time of 0.1second and then seems to remain at 105MPa constantly. In case of 60km/h, its pressure becomes the maximum value of 110MPa at the elapsed time of 0.05second and decreases at 90MPa until the elapsed time of 0.1second. This value fluctuates after the elapsed time of 0.1second. In case of 90km/h, its maximum pressure becomes the maximum value of 155MPa at the elapsed time of 0.07second and fluctuates after the elapsed time of 0.07second until O.3second. This value seems to remain at 100MPa constantly after 0.3second until 0.5second. But this pressure increases suddenly just after 0.5second. Maximum deformations of dummy increase linearly according to elapsed time at hitting velocities of 30, 60 and 90km/h.

Signal Sensing System Design for Pedestrian Safety using Beacon Service (비콘 서비스를 사용한 보행자 안전 신호감지시스템의 설계)

  • Lee, Ju-Hyeong;Han, Moon-Seog
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.576-582
    • /
    • 2016
  • Currently, every person possesses a smart phone due to the development of the IT industry. However, crosswalk pedestrian accidents have been sharply increasing due to smart phone use. If a traffic light can recognize smart phones when a smart-phone user approaches and arrives at a given sign, many accidents could be reduced by using beacon signals. Before the era of smart phones, the accident rate involving cell phone use was relatively low. Nevertheless, when considering the development of IT equipment that produces a threat to human life, government cannot regulate smart phone use outside. The purpose of this paper is to indirectly warn a smart phone user in order to reduce the accident rates.

Estimation of Fatality Reduction by Introducing Technical Regulation on Pedestrian Protection (보행자 충돌안전기준 도입에 따른 사망자수 감소 효과 추정)

  • Oh, Cheol;Kang, Youn-Soo;Kim, Won-Kyu;Kim, Beom-Il
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.49-57
    • /
    • 2005
  • This study developed a methodology for estimating the fatality reduction by introducing technical regulation on pedestrian protection in pedestrian-vehicle collisions. Modeling a probabilistic pedestrian fatality model with logistic regression approach was one of keen interests, which employed in estimating the fatality reduction. Collision speed obtained from the accident reconstruction was used in the model development. The effects of fatality reduction, in case various Head Injury Criterion (HIC) and collision speeds are applied for the regulation. were presented as the major outcome of this study. It is expected that the outcome of this study would be an invaluable tool to assist in developing various technologies and policies for pedestrian protection.

Study on Time-of-day Operation of Pedestrian Signal Based on Residual Pedestrians (잔류보행기반 시간대별 보행신호 운영기법 연구)

  • Chae, HeeChul;Eom, Daelyoung;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.1-17
    • /
    • 2022
  • As pedestrian deaths account for a high proportion of traffic accident deaths in Korea, interest in pedestrian safety is growing. In particular, it is necessary to develop various pedestrian-centered traffic signal operation techniques to improve the pedestrian environment at signal intersections. Therefore, in this study, a method for time-of-day operating a pedestrian signal based on residual pedestrians was studied. To this end, the pedestrian signal operation technique in response to the pedestrian demand, which is operated by extending the pedestrian signal time only during the time when the pedestrian demand and the number of remaining pedestrians increase, was applied to the field. The difference in safety according to the application of the new pedestrian signal operation technique was statistically analyzed. As a result of the analysis, the residual pedestrian rate decreased by 20% (3.3 people) before application and 8% (1.4 people) after application, and the residual pedestrian rate in the crosswalk at the time of red signal decreased by 12% (1.9 people), And it was analyzed that the position of the residual pedestrian decreased by 3.3m from 5.2m before application to 1.9m after application.