• Title/Summary/Keyword: peat packing

Search Result 5, Processing Time 0.02 seconds

Selection of Suitable Packing Material for Biofiltration of Toluene, m- and p-Xylene Vapors

  • Oh, Young-Sook;Park, Sung-Chan
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • A suitable packing material for biofiltration of monoaromatic solvent vapors was selected among various types of packing materials such as peat, bark chips, vermiculite, and Hydroballs. A previously isolated strain, Pseudomonas pseudoalcaligenes BTXO2, which could utilize toluene, m-and p-xylene as carbon and energy sources was used as a biofilter inoculum. Four glass biofilters (6 cm dia. x 60 cm) were individually packed with each of the packing materials and solvent vapors were passed through the columns. During three weeks of peat biofilter operation, average removal efficiencies of toluene, m-and p-xylene were 90.4%, 95.3%, and 82.1%, respectively. With the other packings, the efficiencies were in the range of 10.1 to 58.6% which were significantly lower than those of the peat biofilter. The peat biofilter was continually operated for approximately nine months and the biofilter sustained its degradation activity during the operation period with minimal maintenance. At steady state, average removal rates of toluene, m- and p-xylene vapors were estimated as 14.2, 5.5, and 8.1 g m$\^$-3/ packing h$\^$-1/, respectively.

  • PDF

Reductive Dechlorination of Groundwater Contaminated with PCE using Biobarrier: Column Study (생물벽체를 이용한 PCE로 오염된 지하수의 환원성 탐염소화: 칼럼 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Song, Dong-Ik
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1147-1155
    • /
    • 2007
  • The applicability of in situ biobarrier or microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through column study. In this study, the effect of packing materials on the reductive dechlorination of PCE was investigated using Canadian peat, Pahokee peat, peat moss and vermicompost (or worm casting) as a biobarrier medium. Optimal conditions previously determined from a batch microcosm study was applied in this column study. Lactate/benzoate was amended as electron donors to stimulate reductive dechlorination of PCE. Hydraulic conductivity was approximately $6{\times}10^{-5}-8{\times}10^{-5}\;cm/sec$ and no difference was found among the packing materials. The transport and dispersion coefficients determined from the curve-fitting of the breakthrough curves of $Br^-$ using CXTFIT 2.1 showed no difference between single-region and two-region models. The reductive dechlorination of PCE was efficiently occurred in all columns. Among the columns, especially the column packed with vermicompost exhibited the highest reductive dechlorination efficiency. The results of this study showed the promising potential of in situ biobarrier technology using peat and vermicompost for the remediation of groundwater contaminated with chlorinated solvents.

Characteristics of Hydrogen-sulfide(H2S) removal by a Biofilter with Organic Materials, Peat and Rock wool (유기담체인 Peat 및 Rock wool을 사용한 바이오필터에 의한 황화수소(H2S)의 제거특성)

  • Kim, Nam-jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.136-144
    • /
    • 2001
  • Two organic materials, peat and rock wool were used for removal of $H_2S$ by a biofilter inoculated with night soil sludge. By gradually increasing the inlet load of $H_2S$, the complete removal capacity, which was defined as the inlet load of $H_2S$ that was complete removed, and the maximum removal capacity of $H_2S$, which was the value when the removal capacity leveled off for organic materials, were estimated. Both values for Rock wool are larger than peat, based on a unit dry weight of material. By using kinetic analysis, the maximum removal rate of $H_2S$, $V_m$, and the saturation constant, $K_s$, were determined for all packing materials and the values of $V_m$ for rock wool was found to be larger. By using the kinetic parameters, the removal rates for $H_2S$ were compared both packing materials, and rock wool showed better performance for the removal of $H_2S$ in the inlet concentration range of 0~200ppm.

  • PDF

Degradation of Volatile Organic Compound Mixtures Using a Biofiltration System (생물여과 시스템을 이용한 다성분계 휘발성 유기화합물의 분해)

  • 윤인길;박창호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.501-506
    • /
    • 2000
  • A bench-scale air biofilter was evaluated for the removal of volatile organic compounds (VOCs) from a gas stream. Compost and peat were used as the biological attachment media. Biofilter operating parameters such as incoming VOCs concentrations, temperature, and packing materials were examined. After 26 days of acclimation periods, at 25$^{\circ}C$ and 45$^{\circ}C$, the biofilter removed more than 90% of 30 to 72 mg/㎥ of total VOC. After 40 days of operation, the concentrations of isoprene, toluene, and m-xylene were reduced to 96∼99, 91∼93, and 91∼93% of the original concentrations. VOC removal efficiency was not affected by the temperature. The medium pH was maintained near neutral (pH 6.5∼7.1). After 37 days of operation, the total bacteria count in the biofilter media increased to 1.12${\times}$10(sup)8 cells/g of medium.

  • PDF

Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media (피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성)

  • Kang, Young-Heoun;Kim, Deok-Woo;Kang, Seon-Hong;Kwon, Pil-Joo;Kim, Dal-Woo;Hwang, Pil-Gi;Shim, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.