• Title/Summary/Keyword: peak strength

Search Result 1,168, Processing Time 0.029 seconds

Effects of Various Additives on the Thermal Properties and Gel Structure of Mackerel Surimi Prepared by Alkaline Washing under Reduced Pressure (몇가지 첨가물이 감압 알칼리 수세한 고등어 Surimi의 열특성 및 Gel 조직에 미치는 영향)

  • Park, Hyung-Sun;Park, Sang-Woo;Yang, Seung-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1350-1356
    • /
    • 1998
  • An attempt was made to investigate the effects of additives (3%) such as egg white, soybean protein, corn starch and Read Amity-N (green bean starch 85%+psyllium husk 10%) on the thermal properties and gel structures of mackerel surimi and to examine the quality of surimi by using differential scanning calorimetry (DSC), rheometry and scanning electron microscopy (SEM). The thermal transition temperatures of mackerel surimi protein were 40, 52, 67 and $79^{\circ}C$ after those temperatures were changed to 37, 46, 57 and $76^{\circ}C$ after adding salt (3% NaCl). Addition of Read Amity-N and corn starch to surimi showed new peak at the temperature of $90^{\circ}C\;and\;92^{\circ}C$, respectively. The enhancing effects of gel strengths of mackerel surimi cooked gels prepared from adding four kinds of additives, respectively, were egg white > soybean protein > Read Amity-N > corn starch in order. Scanning electron microscopy showed a difference in fine structures between the cooked gels which were prepared with and without additives. Dispersion profiles of protein were more thick in cooked gel prepared with additive than in cooked gel prepared without additive.

  • PDF

The usability of the MR Breast perfusion image and Time-Signal Intensity curve in Breast cancer patients (유방암 환자에서 MR Breast perfusion 영상과 시간-신호강도 곡선의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4068-4074
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of MR Breast perfusion image and time-signal intensity curve in patients diagnosed with breast cancer. We selected on 20 patients who were histologically diagnosed to have invasive ductal carcinoma (IDC) from March 2009 to December 2010. First, the Breast perfusion mapping image was reconstructed after obtaining the dynamic contrast enhancement image. The reconstructed image measured the slope, maximal relative enhancement, and time to peak on the detail including the lesion region, normal region, back ground region after obtaining the time-signal intensity curve. The lesion region and normal and slope of the back ground part were measured with the quantitive analytical method about the research and the average was compared and was analyze. In the qualitative analysis, the signal strength of each pixel was analyze with the macroscopic and being high it was low, the medium (2) performed the division of (a) by the three-point standard and the average was measured. The findings from the quantitative image analysis are the following: In the lesion region, the slope and maximal relative enhancement were the highestest among and the time to peak was the highestest in the back ground region. In the qualitative analysis, the breast perfusion image showed a diagnostic efficiency.

Analysis of Physicochemical Properties and Firing Temperature for the Clay Bricks Excavated from the Maritime Province of Severia (연해주 콕샤로프카-1 평지성 출토 토벽의 물리화학적 특성 및 소성온도 분석)

  • Kim, So-jin;Heo, Jun-su;Kim, Jin-hyoung;Kim, Dong-hun;Han, Min-su
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.206-219
    • /
    • 2013
  • This study aims to estimate firing temperature and physicochemical properties of the four clay bricks excavated from the Maritime Province of Siberia. Analysis result shows that the specimens are composed of clay, quartz and feldspar, and some specimens include carbonized organic materials which were probably added in order to enhance its physical strength in bricks. Major mineral components of the bricks are quartz, illite and clay minerals. The result identifying the existence of silimanite by XRD suggests that white material of the Koc 1 was painted for a certain purpose. Unlike most specimens which contained hematite, several samples contain Mullite. Such result suggests that some bricks were fired at high temperature. Furthermore, the results from TG analysis which does not display exothermic peak which appears at between $800^{\circ}C$ to $1,000^{\circ}C$ but display endothermic peak at $900^{\circ}C$ and it also confirms that they were exposed at $900^{\circ}C$ or higher.

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Effect of Aging Treatment on the Mechanical Properties of Mg-6Al-xZn(x=0,1,2) Alloys Fabr~catedb y Squeeze Casting (용탕단조법에 의해 제조된 Mg-6AI-xZn(x0,1,2)합금의 기계적 성질에 미치는 시효처리의 영향)

  • Gang, Min-Cheol;Yun, Il-Seong;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.129-135
    • /
    • 1997
  • This study has investigated the effects of aging treatment on thc nlechanical propcrries of blg-iiAl-x%nix - 0.1.2) alloys fabricated by the squeeze castmg process. The microstructurcs of as-squeeze cast were composed of pro eurectic $\alpha$ magnesium solid solution, super saturated $\alpha$ solid solution and $\beta(Mg_{17}AI_{12}$) compund. Agcd at both $200^{\circ}C$ and $240^{\circ}C$, Mg--6AixZn alloys showed the peak hardness due to the formation of $\beta(Mg_{17}AI_{12}$) precipitates. The tiiscontinuous precipitates of the lamella r\.pe are predominant at $200^{\circ}C$ aging tredrment. tvhilc. the finely dispersed continu ous precipitates were major type at $240^{\circ}C$ treatment. Mg-- GAI-xZn a1loi.s fabricated hy the squeeze casting process had the hetter combination of tensile strength and elongation compared to the conventionally cast alloys. As increascci zinc: contents. the tensile strength was increased 11y the soiid solutirin strengthening effect of zinc,.

  • PDF

Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber (강섬유 혼입률과 피복두께에 따른 GFRP 보강근의 부착특성)

  • Choi, Yun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.761-768
    • /
    • 2012
  • The purpose of this study is to investigate bond properties of GFRP used in SFRC (Steel fiber reinforced concrete) and normal concrete. The experimental variables were rebar diameter (D13, D16), steel fiber volume fraction (0~2%) and cover thickness ($1.5d_b$, $5.4d_b$). The experimental results showed a different failure mode depending on the cover thickness. Through the tested specimens, splitting failure occurred for the specimens with small cover thickness and pull out failure occurred in the specimens with large cover thickness. Introduction of steel fiber caused the specimens to have more ductile behavior of bond stresss-lip after peak stress, but they did not increase the bond strength significantly. These failure modes were shown in both steel reinforcement and GFRP. However, from the difference of micro structure of bond failure mechanism between steel rebar and GFRP rebar, more ductile behavior was observed in GFRP-specimens after maximum bond strength was reached.

Lane-wise Travel Speed Characteristics Analysis in Uninterrupted Flow Considering Lane-wise Speed Reversal (차로속도역전현상을 고려한 연속류 도로의 차로별 주행 속도 특성 분석)

  • Yang, Inchul;Jeon, Woo Hoon;Ki, Sung hwan;Yoon, Jungeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.116-126
    • /
    • 2016
  • In this study, lane-wise traffic flow characteristics were analysed on uninterrupted flow using a new notion of "lane-wise travel speed reversal (LTSR)" which is defined as a phenomena that travel speed in the median lane is lower than other lanes. Mathematical formulation was also proposed to calculate the strength of LTSR. The experiment road site is Seoul Outer Ring Expressway (Jayuro-IC~Jangsoo-IC), and travel trajectories for each four lane were collected for weekdays (Mon. through Fri.) during morning peak. Comparing lane-wise travel speeds for entire test road section, no LTSR was observed, meaning that the travel speed in the median lane is the fastest, followed by 2nd, 3rd, and 4th lane as in order. Howerver, the result of microscopic analysis using 100-meter discrete road section based data shows that LTSR occurs many times. Especially the strength of LTSR is higher in congestion area and freeway merge and diverge segment. It is expected that these results could be used as a fundamental data when establishing lane-by-lane traffic operation strategy and developing lane-wise traffic information collection and dissemination technology.

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

Broadband Multi-Layered Radome for High-Power Applications (고출력 환경에 적용 가능한 광대역 다층 구조 레이돔)

  • Lee, Ki Wook;Lee, Kyung Won;Moon, Bang Kwi;Choi, Samyeul;Lee, Wangyong;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • In this paper, we developed a broadband multi-layered radome applicable for high-power applications. In this regard, we presented the wave propagation characteristics of the broadband multi-layered radome with the ABCD matrix and obtained the optimal thickness and the material constant for each layer by an optimization algorithm called "particle swarm optimization," implemented by a commercial numerical modeling tool. Further, we redesigned it in view of mechanical properties to reflect environmental conditions such as wind, snow, and ice. The power transmission property was reanalyzed based on the recalculated data of each layer's thickness to consider the limitations of the fabrication of a large structure. Under the condition of a peak electric field strength that is 10 dB above the critical electric field strength in air breakdown, we analyzed the air breakdown by radio frequency(RF) in the designed radome using the commercial full-wave electromagnetic tool. The radome was manufactured and tested by continuous wave(CW) RF small signal and large signal in an anechoic chamber. The test results showed good agreement with those attained by simulation.