• Title/Summary/Keyword: peak strength

Search Result 1,168, Processing Time 0.023 seconds

Reaction Characteristics of Geopolymer Paste Incorporating Fly-ash and GGBS (플라이애쉬와 고로슬래그 미분말을 혼입한 지오폴리머 페이스트의 반응특성 분석)

  • Shin, Ki-Su;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.321-330
    • /
    • 2020
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. In previous studies, it has been found that the addition of LF to reduce the cementitious paste volume would substantially increase the compressive strength, and reduce the heat generation. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

A Stress-Strain Relationship of Alkali-Activated Slag Concrete (알칼리활성 슬래그 콘크리트의 응력-변형률 관계)

  • Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Kyong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • The present study summarizes a series of compressive tests on concrete cylinder in order to examine the stressstrain relationship of alkali-activated (AA) slag concrete. The compressive strength and unit weight of concrete tested ranged from 8.6 MPa to 42.2 MPa and from $2,186kg/m^3$ to $2,343kg/m^3$, respectively. A mathematical equation representing the complete stress-strain curve was developed based on test results recorded from 34 concrete specimens. The modulus of elasticity, strain at peak stress, slopes of ascending and descending branches of stress-strain curves were generalized as a function of compressive strength and unit weight of concrete. The mean and standard deviation of the coefficient of variance between measured and predicted curves were 6.9% and 2.6%, respectively. This indicates that the stress-strain relationship of AA slag concrete is represented properly with more accuracy in the proposed model than in some other available models for ordinary portland cement (OPC) concrete.

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

Flame Retardancy and Physical Properties of Polyurethane Foam with Expandable Graphite (팽창 흑연을 포함한 폴리우레탄 폼의 난연 및 물성 변화 연구)

  • Bae, Sung-Jun;Park, Ji-Hyeon;Go, Jae-Wang;Choi, Pil-Jun;Lee, Jae-Yeon;Sur, Suk-Hun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.96-101
    • /
    • 2019
  • In this study, the flame retardant and physical properties of the expandable graphite/polyurethane foam composites were considered by the addition of expandable graphite. The tensile strength of expandable graphite/polyurethane foam composites decreased with the content of the expandable graphite and the analysis of cell shape by SEM has shown that as the expandable graphite content increases, the cell becomes uneven and collapses. As the results of the compressive strength, density and air permeability tests, it was found that density and as the content of the expandable graphite increased, the compressive strength of the composites increased but air permeability decreased. When the amount of expandable graphite was added at 10 phr or higher, the foam has excellent flame retardation performance. Analysis of the degree of diffraction by X-ray diffraction (XRD) showed that as the content of the expandable graphite increased, the crystal peak of the graphite appeared near $2{\theta}=26^{\circ}$.

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Estimation of Compressive Strength for Cemented River Sand (고결된 하상모래의 압축강도 추정)

  • Jeong, Woo-Seob;Yoon, Gil-Lim;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.67-78
    • /
    • 2008
  • In this study, artificial cemented sand made of a few portland cement and Nak-Dong river sand was researched closely to investigate cementing effect quantitatively through unconfined tests and triaxial tests. The peak strength and elastic modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation and negative excess pore water pressure increased. In stress-strain curve, strain-softening behavior appeared in drained condition but strain-hardening behavior was appeared in undrained condition as a result of the increase of effective stress. The test was quantitatively analyzed by multiple regression models, correlating each response variable with input variable. The equations are valid only over the range investigated. Its adjusted coefficient of determination was $0.81{\sim}0.91$, and dry density is important factor for estimating strength of cemented sand.

Evaluation of Applicability of Circuit-analog Radar Absorbing Structures for High Temperature in 350℃ and Hot-wet Environment (고온용 Circuit-analog 전파흡수구조의 350℃ 및 열 수분 환경에서의 적용성 평가)

  • Min-Su Jang;Ho-Beom Kim;Heon-Suk Hong
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2023
  • We proposed a high-temperature circuit-analog radar absorbing structures (CA-RAS), and evaluated radar absorption performance and tensile properties in 350℃ and a hot-wet environment. The CA-RAS was implemented with a glass/cyanate ester composites and a square resistive pattern layer, and reflection loss was measured by 350℃ and after exposure of hot-wet condition using free space measurement. And the tensile strength at 350℃ and after exposure of hot-wet condition was measured according to the ASTM D638. The proposed CA-RAS showed a 4 GHz of -dB bandwidth and -20 dB of a peak value at 350℃. In addition, there was no deterioration in absorption performance after exposure to a hot-wet condition. The tensile strength value of more than 95% compared to the strength of the glass/cyanate ester composite was confirmed at 350℃ and after exposure of hot-wet condition. Through this, the applicability of CA-RAS proposed in this study was confirmed as a load bearing structure for stealth weapon exposed to high temperature and hot-wet environment.

Investigation on physical and mechanical properties of manufactured sand concrete

  • Haoyu Liao;Zongping Chen;Ji Zhou;Yuhan Liang
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.177-188
    • /
    • 2023
  • In the context of the shortage of river sand, two types of manufactured sand (MS) were used to partially replace river sand (RS) to design manufactured sand concrete (MSC). A total of 81 specimens were designed for uniaxial compression test and beam flexure test. Two parameters were considered in the tests, including the types of MS (i.e. limestone manufactured sand (LMS), pebble manufactured sand (PMS)) and the MS replacement percentage (i.e., 0%, 25%, 50%, 75%, 100%). The stress-strain curves of MSC were obtained. The effects of these parameters on the compressive strength, elastic modulus, peak strain, toughness and flexural strength were discussed. Additionally, the sensitivity of particle size distributions to the performance of MSC was evaluated based on the grey correlation analysis. The results showed that compared with river sand concrete (RSC), the rising slope of the stress-strain curves of limestone manufactured sand concrete (LMSC) and pebble manufactured sand concrete (PMSC) were higher, the descending phrase of LMSC were gentle but that of PMSC showed an opposite trend. The physical and mechanical properties of MSC were affected by the MS replacement percentage except the compressive strength of PMSC. When the replacement percentage of LMS and PMS were 50% and 25% respectively, the corresponding performances of LMSC and PMSC were better. In generally, when the replacement percentage of LMS and PMS were same, the comprehensive performance of LMSC were better than that of PMSC. The constitutive model and the equations for mechanical properties were proposed. The influence of particle ranging from 0.15 mm to 0 mm on the performance of MSC was lower than particle ranging from 4.75 mm to 0.15 mm but this influence should not be ignored.

Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT

  • Wookon Son;MinWoo Kim;Jae-Yeon Hwang;Young-Woo Kim;Chankue Park;Ki Seok Choo;Tae Un Kim;Joo Yeon Jang
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods: Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results: The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion: For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.