• Title/Summary/Keyword: peak power management

Search Result 170, Processing Time 0.034 seconds

Comparison of Intelligent Charging Algorithms for Electric Vehicles to Reduce Peak Load and Demand Variability in a Distribution Grid

  • Mets, Kevin;D'hulst, Reinhilde;Develder, Chris
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.672-681
    • /
    • 2012
  • A potential breakthrough of the electrification of the vehicle fleet will incur a steep rise in the load on the electrical power grid. To avoid huge grid investments, coordinated charging of those vehicles is a must. In this paper, we assess algorithms to schedule charging of plug-in (hybrid) electric vehicles as to minimize the additional peak load they might cause. We first introduce two approaches, one based on a classical optimization approach using quadratic programming, and a second one, market based coordination, which is a multi-agent system that uses bidding on a virtual market to reach an equilibrium price that matches demand and supply. We benchmark these two methods against each other, as well as to a baseline scenario of uncontrolled charging. Our simulation results covering a residential area with 63 households show that controlled charging reduces peak load, load variability, and deviations from the nominal grid voltage.

A Configuration of DLC(Direct Load Control) Using TCP/Ethernet Module And Load Control Method ( I ) (TCP/Ethernet방식을 이용한 DLC(Direct Load Control)의 구성 및 부하제어기법 ( I ))

  • Kim, Hyong-Joong;Kim, In-Soo;Park, Kyu-Hyu;Cha, Yang-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.570-572
    • /
    • 2000
  • In this paper, we present the configuration of Direct Load Control System using TCP/Ethernet Module for the Load Management Europe and America has operated the DLC system by many communication system, and Taiwan, Japan has controlled the cooling load at peak hours of power system. Up to now, Many Researches for the DLC of communication method, so called, pager, power line carrier, ripple control, etc. has advanced. Now, we present new communication method for the DLC using TCP/Ethernet module which is widespread all over the world.

  • PDF

Economic Feasibility Study for Peak Load Control (최대부하제어(最大負荷制御)의 경제적(經濟的) 타당성(妥當性) 검토(檢討))

  • Yu, Sung-Chul;Yoon, Kap-Koo;Cho, Soon-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.19-22
    • /
    • 1993
  • Demand side management (DSM) is the planning and implementation of those utility designed to influence customer use of electricity in ways that will produce desired changes in the utility's load shape. It is conspicuous that the peak load control of DSM is efficiently adopted. In this paper, the package type air conditioner(A/C) mounted radio controlled switch. During the summer of 1990 KEPCO conducted tests in Seoul areas to determine the economic feasibility of interrupting A/C units for short periods of time during peak load periods. These tests were performed between July 30 and September 20 and were limited to the hours of between 1 and 6 p.m. These tests indicated that each A/C contributes approximately 4.5kW to the system peak and can be switched off 10 minutes out of each 1/2 hour without causing the customer any discomfort. Switching each A/C off for 10 minutes out of each 1/2 hour results in a peak load demand reduction of one kW per unit.

  • PDF

An Adaptive Control of Smart Appliances with Peak Shaving Considering EV Penetration (전기자동차 침투율을 고려한 피크 부하 저감용 스마트 기기의 적응적 제어)

  • Haider, Zunaib Maqsood;Malik, Farhan H.;Rafique, M. Kashif;Lee, Soon-Jeong;Kim, Jun-Hyeok;Mehmood, Khawaja Khalid;Khan, Saad Ullah;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.730-737
    • /
    • 2016
  • Electric utilities may face new threats with increase in electric vehicles (EVs) in the personal automobile market. The peak demand will increase which may stress the distribution network equipment. The focus of this paper is on an adaptive control of smart household appliances by using an intelligent load management system (ILMS). The main objectives are to accomplish consumer needs and prevent overloading of power grid. The stress from the network is released by limiting the peak demand of a house when it exceeds a certain point. In the proposed strategy, for each smart appliance, the customers will set its order/rank according to their own preferences and then system will control the household loads intelligently for consumer reliability. The load order can be changed at any time by the customer. The difference between the set and actual value for each load's specific parameter will help the utility to estimate the acceptance of this intelligent load management system by the customers.

Development of Measurement and Performance Testing System for Heat Pump water Heater (히트펌프 온수기 개발을 위한 계측 및 성능평가시스템 구축)

  • Kwon, Seong-Chul;Yang, Seung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2310-2312
    • /
    • 2004
  • In Korea Electric Power Corporation (or KEPCO), several Demand-Side Management (or DSM) program have been carried out to effectively meet electric power demand at least costs by modifying customers electricity use patterns. As one of them, KEPCO applies low-priced night thermal-storage power service for heat appliances to facilitate efficient use of power facilities by shifting relatively high daytime demands to night hours to build loads during the off-peak periods. In the market of heat-storage type water-heater, electric water-heater has been mostly used, but it has low energy efficiency and needs high capacity electric equipments. So in order to replace these electric water heaters, 15 HP air-source heat pump water heater is developed in Korea Electric Research Institute (or KEPRI). This paper shows that measurement system for performance testing of heat pump water heater is established and heating capacity and performance is analyzed and measured for out-door environmental change.

  • PDF

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

A study on the Implementation of a Remote Control System for Peak Load Clipping (첨두부하 억제를 위한 원격부하제어시스템 개발 및 적용에 관한 연구)

  • Cho, Seon-Ku;Moon, Hong-Suk;Yoon, Kap-Koo;Lee, Won-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.165-168
    • /
    • 1995
  • The recent rapid growth of air conditioning load has become a major reason of peak load increase in summer. In connection with this, we surveyed the load management projects of utilities world-wide and their detailed activities. This study is to develop a remote load control system using computer and radio communications. We finished the field-test of this system on August 1995 in Seoul area. During the field-test, the remote load control of air conditioners was proved to be well-timed. Two control modes, group control and all control, are available for the user to select. The transmission reliability of the load control signal was very good and the functions of system hardware as well as the software were excellent. So we confirmed the applicability of the load control system including the paper communication network. In this paper, detailed information on the system functions and experimental results are described.

  • PDF

Investigating the Impacts of Different Price-Based Demand Response Programs on Home Load Management

  • Rastegar, Mohammad;Fotuhi-Firuzabad, Mahmud;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1125-1131
    • /
    • 2014
  • Application of residential demand response (DR) programs are currently realized up to a limited extent due to customers' difficulty in manually responding to the time-differentiated prices. As a solution, this paper proposes an automatic home load management (HLM) framework to achieve the household minimum payment as well as meet the operational constraints to provide customer's comfort. The projected HLM method controls on/off statuses of responsive appliances and the charging/discharging periods of plug-in hybrid electric vehicle (PHEV) and battery storage at home. This paper also studies the impacts of different time-varying tariffs, i.e., time of use (TOU), real time pricing (RTP), and inclining block rate (IBR), on the home load management (HLM). The study is effectuated in a smart home with electrical appliances, a PHEV, and a storage system. The simulation results are presented to demonstrate the effectiveness of the proposed HLM program. Peak of household load demand along with the customer payment costs are reported as the consequence of applying different pricings models in HLM.

A Study on Programmable Logic-based Smart Peak Power Control System (프로그램 로직 기반의 스마트 최대 전력 관리 시스템에 관한 연구)

  • Lee, Woo-Cheol;Kwon, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • The paper is related to smart maximum power system based on program logic. Especially, this system compares the total demand power with the target power by using the signal from the digital kilo watt meter. Based on the power information by the maximum power control equipment the consumed future power is anticipated. In addition, through consumed future power the controllable target power is set, and it applies on the maximum power control equipment. User or manager would control the load efficiently through the simple programming which could control load based on the control sequence and relay. To begin with the conventional maximum power control algorithm is surveyed, and the smart maximum power control system based on program logic is used, and the new algorithm from full load to proportion shut down is proposed by using PLC program. the validity of the proposed control scheme is investigated by both simulation results.

An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR)

  • Park, Jong-Woon;Jerng, Dong-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.473-478
    • /
    • 1997
  • A severe accident management strategy, in-vessel retention corium through external reactor vessel cooling(ERVC) is being studied worldwide as a means to prevent reactor vessel failure following a core melt accident. An evaluation of feasibility of this ERVC for a large Advanced Light Water Reactor (ALWR) is presented. To account for the coolability of corium and metal in the reactor vessel, a thermal analysis is performed using an existing method. Results show that the peak heat flux along the inner surface of the reactor vessel lower head has a relatively smaller margin than a small capacity reactor such as AP600 in regards with the critical heat flux attainable at the outer surface of the reactor vessel lower head.

  • PDF