• Title/Summary/Keyword: peak power management

Search Result 170, Processing Time 0.03 seconds

Optimal Machine Operation Planning under Time-based Electricity Rates (시간대별 차등 전기요금을 고려한 최소비용 장비운용계획)

  • Kim, Inho;Ok, Changsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.63-71
    • /
    • 2014
  • As power consumption increases, more power utilities are required to satisfy the demand and consequently results in tremendous cost to build the utilities. Another issue in construction of power utilities to meet the peak demand is an inefficiency caused by surplus power during non-peak time. Therefore, most power company considers power demand management with time-based electricity rate policy which applies different rate over time. This paper considers an optimal machine operation problem under the time-based electricity rates. In TOC (Theory of Constraints), the production capacities of all machines are limited to one of the bottleneck machine to minimize the WIP (work in process). In the situation, other machines except the bottleneck are able to stop their operations without any throughput loss of the whole manufacturing line for saving power utility cost. To consider this problem three integer programming models are introduced. The three models include (1) line shutdown, (2) block shutdown, and (3) individual machine shutdown. We demonstrate the effectiveness of the proposed IP models through diverse experiments, by comparing with a TOC-based machine operation planning considered as a current model.

A Study on Design of Home Energy Management System to Induce Price Responsive Demand Response to Real Time Pricing of Smart Grid (스마트그리드 실시간요금과 연동되는 수요반응을 유도하기 위한 HEMS 설계에 관한 연구)

  • Kang, Dong-Joo;Park, Sun-Joo;Choi, Soo-Jung;Han, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.39-49
    • /
    • 2011
  • Smart Grid has two main objectives on both supply and demand aspects which are to distribute the renewable energy sources on supply side and to develop realtime price responses on demand side. Renewable energy does not consume fossil fuels, therefore it improves the eco-friendliness and saves the cost of power system operation at the same time. Demand response increases the flexibility of the power system by mitigating the fluctuation from renewable energies, and reduces the capacity investment cost by shedding the peak load to off-peak periods. Currently Smart Grid technologies mainly focus on energy monitoring and display services but it has been proved that enabling technologies can induce the higher demand responses through many pilot projects in USA. On this context, this paper provides a price responsive algorithm for HEMS (home energy management system) on the real time pricing environment. This paper identifies the demand response as a core function of HEMS and classifies the demand into 3 categories of fixed, transferable, and realtime responsive loads which are coordinated and operated for the utility maximization or cost minimization with the optimal usage combination of three kinds of demand.

Bargaining-Based Smart Grid Pricing Model for Demand Side Management Scheduling

  • Park, Youngjae;Kim, Sungwook
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.197-202
    • /
    • 2015
  • A smart grid is a modernized electrical grid that uses information about the behaviors of suppliers and consumers in an automated fashion to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity. In the operation of a smart grid, demand side management (DSM) plays an important role in allowing customers to make informed decisions regarding their energy consumption. In addition, it helps energy providers reduce peak load demand and reshapes the load profile. In this paper, we propose a new DSM scheduling scheme that makes use of the day-ahead pricing strategy. Based on the Rubinstein-Stahl bargaining model, our pricing strategy allows consumers to make informed decisions regarding their power consumption, while reducing the peak-to-average ratio. With a simulation study, it is demonstrated that the proposed scheme can increase the sustainability of a smart grid and reduce overall operational costs.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

A Study on Operation Scheme of STS with Emergency Generator for Peak Shedding (첨두부하 저감을 위한 비상발전기 연계형 STS 운영 방안에 관한 연구)

  • Kim, Chang-Hwan;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • Recently, electricity consumption has rapidly increased along with economic growth. The operating strategy using emergency generator is aimed, to resolve a demand response management. For strategy of peak shedding using emergency generator, it is essential to introduce the fast transfer switching device. One of the most effective solutions is to use a static transfer switch (STS) based on thyristor. However, the characteristic of natural commutated SCR thyristor should anticipate short duration voltage sag. STS system thus requires more than a quarter cycle to successfully complete transfer process. This paper proposes the operation scheme of the STS system using the forced-commutation technique to mitigate instantaneous voltage sag during peak transfer process. Proposed STS system improved turn-off characteristic thus accomplishes the peak load shedding satisfied power quality. Performance of the proposed STS system is evaluated using electromagnetic transient program (EMTP) to confirm the effectiveness.

  • PDF

An Optimal Power Scheduling Method Applied in Home Energy Management System Based on Demand Response

  • Zhao, Zhuang;Lee, Won Cheol;Shin, Yoan;Song, Kyung-Bin
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.677-686
    • /
    • 2013
  • In this paper, we first introduce a general architecture of an energy management system in a home area network based on a smart grid. Then, we propose an efficient scheduling method for home power usage. The home gateway (HG) receives the demand response (DR) information indicating the real-time electricity price, which is transferred to an energy management controller (EMC). Referring to the DR, the EMC achieves an optimal power scheduling scheme, which is delivered to each electric appliance by the HG. Accordingly, all appliances in the home operate automatically in the most cost-effective way possible. In our research, to avoid the high peak-to-average ratio (PAR) of power, we combine the real-time pricing model with the inclining block rate model. By adopting this combined pricing model, our proposed power scheduling method effectively reduces both the electricity cost and the PAR, ultimately strengthening the stability of the entire electricity system.

Hydro-electric Power Generation System of Multi-purpose Dams in Koresa - A Framework for Investment Justification and Economic Operation - (한국의 다목적댐 수력발전 체계 - 투자의 정당화와 경제적 운영 -)

  • 이승규;박용삼
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.157-173
    • /
    • 1995
  • Hydro-electric power generation from multi-purpose dams has been playing important roles in the electric power supply network in Korea. Although the total share of hydro power in national electricity supply now becomes very small, the peak-shaving and frequency control capability of hydro power helps the power company enormously in maintaining the quality of power. But since the company that builds and operates the multi-purpose dams in Korea has to sell all the electricity produced to the monopolistic utility, there have been various problems in justifying the investment, designing pricing mechanism, and controlling operations of the power plants. In addition, economic evaluation of the hydro power has been distorted by a variety of reasons and hence it has been very difficult to encourage effective development and utilization of national water resources. To make the problem worse, both parties are public companies with X-inefficiency problems. Thus, changing environment requires to reengineer the system that governs hydro power generation. We address the problems of Korean hydro-electric power generation system in four areas: the investment justification process, the operations decison right of the hydro power plants, the pricing of the purchased-power, and the negotiation of contract revision. Then we propose improvement directions of new hydro-electric power system in view of static and dynamic efficiency, X-inefficiency and equity.

  • PDF

Adjustment of Load Regression Coefficients and Demand-Factor for the Peak Load Estimation of Pole-Type Transformers (주상 변압기 최대부하 추정을 위한 부하상관계수 및 수용율 조정)

  • Yun, Sang-Yun;Kim, Jae-Chul;Park, Kyung-Ho;Moon, Jong-Fil;Lee, Jin;Park, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • This paper summarizes the research results of the load management for pole transformers done in 1997-1998 and 2000-2002. The purpose of the research is to enhance the accuracy of peak load estimation in pole transformers. We concentrated our effort on the acquisition of massive actual load data for modifying the load regression coefficients, which related to the peak load estimation of lamp-use customers, and adjusting the demand-factor coefficients, which used for the peak load prediction of motor-use customers. To enhance the load regression equations, the 264 load data acquisition devices are equipped to the sample pole transformers. For the modification of demand factor coefficients, the peak load currents are measured in each customer and pole transformer for 13 KEPCO (Korea Electric Power Corporation) distribution branch offices. Case studies for 50 sample pole transformers show that the proposed coefficients could reduce estimating error of the peak load for pole transformers, compared with the conventional one.

A Framework for Investment Justification and Economic Operation- (한국의 다목적댐 수력발전 체계-투자의 정당화와 경제적 운영-)

  • 이승규;박용삼
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.1
    • /
    • pp.157-157
    • /
    • 1987
  • Hydro-electric power generation from multi-purpose dams has been playing important roles in the electric power supply network in Korea. Although the total share of hydro power in national electricity supply now becomes very small, the peak-shaving and frequency control capability of hydro power helps the power company enormously in maintaining the quality of power. But since the company that builds and operates the multi-purpose dams in Korea has to sell all the electricity produced to the monopolistic utility, there have been various problems in justifying the investment, designing pricing mechanism, and controlling operations of the power plants. In addition, economic evaluation of the hydro power has been distorted by a variety of reasons and hence it has been very difficult to encourage effective development and utilization of national water resources. To make the problem worse, both parties are public companies with X-inefficiency problems. Thus, changing environment requires to reengineer the system that governs hydro power generation. We address the problems of Korean hydro-electric power generation system in four areas: the investment justification process, the operations decison right of the hydro power plants, the pricing of the purchased-power, and the negotiation of contract revision. Then we propose improvement directions of new hydro-electric power system in view of static and dynamic efficiency, X-inefficiency and equity.

Composition and Operation of Direct Load Control(DLC) System for use of Demand Side (수용가용 직접부하제어시스템의 구성 및 운영)

  • Park J.C.;Choi M.G.;Lee Y.G.;Kim S.J.;Jeong B.H.;Choe G.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1260-1262
    • /
    • 2004
  • Direct Load Control(DLC) system is a load management program for stablization of electric power supply-demand. It is a series of acts limiting the demand of selected demand side at peak load or other time periods. Recently, power supply-demand instability due to dramatic increase in power usage such as summertime air-conditioning load has brought forecasts of decrease in power supply capability. Therefore heightening the load factor through systematic load management, in other words, Direct Load Control became necessary. By examining the composition and operation of the DLC system, this paper provides conceptional understanding of the DLC system and help in system research.

  • PDF