• Title/Summary/Keyword: peak power management

Search Result 170, Processing Time 0.023 seconds

Adjustment of load correlation coefficient for advanced load management (부하관리 개선을 위한 부하 상관계수 산정에 관한 연구)

  • Park, Chang-Ho;Cho, Seong-Soo;Kim, Gi-Hyun;Im, Jin-Soon;Kim, Du-Bong;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1267-1269
    • /
    • 1999
  • This paper studies on arrangement of load correlation coefficient for advanced load management. To accurate load correlation coefficient, we used two real factors, electrical energy(kWh) and peak load current of pole transformers, acquired by measuring instrument. Out of several correlation equations, we find that the quadratic equation is the most accurate to express peak load current and working electrical energy. If the data is located in the outside of ${\pm}3{\sigma}$ it is discarded. For load management, we rearranged load correlation coefficient considering +2${\sigma}$ at load correlation equation. Comparing conventional load correlation coefficient with rearranged one, we can get the result of error reduced and it is adjacent to the actual data. It will be used peak load forecasting from working electrical energy and we are able to prevent from the damaging of pole transformer due to overload.

  • PDF

A Study on Load Control Method for Home Energy Management System (H-EMS) Considering the Human Comfort (주거자 만족도를 고려한 주택 에너지관리 시스템의 부하제어 방법 연구)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1025-1032
    • /
    • 2014
  • The effective energy management method will provide the significant advantage to the residential customers under real time pricing plan since it can reduce the electricity charge by controlling the energy consumption according to electricity rate. The earlier studies for load management mainly aim to minimize the electricity charges and peak power but put a less emphasis on the human comfort dwelling in the residence. The discomfort and displeasure from the energy management only focusing on reduction of electricity charge will make the residential customer reluctant to enroll the real time pricing plan. In this paper, therefore, we propose optimal load control strategy which aim to achieve not only minimizing the electricity charges but also maintaining human comfort by introducing "the human comfort coefficient." Using the human comfort coefficient, the energy management system can reflect the various human personality and control the loads within the range that the human comfort is maintained. Simulation results show that proposed load control strategy leads to significant reduction in the electricity charges and peak power in comparison with the conventional load management method.

Application of Demand Controller for Summer Peak Demand Shaving and Valuation of its Economical Efficiency (하계최대부하 억제를 위한 디맨드 콘트롤러 적용사례 및 경제성 평가)

  • Kang, W.G.;Lee, G.W.;Kim, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.720-723
    • /
    • 1996
  • The recent summer power peak crisis has been caused by excessive use of cooling loads at daily peak time in summer. The yearly load shape of KEPCO has gradually became very steep valley. Under this situation, more efficient DSM(Demand Side Management) tools are fully required for summer peak clipping and shaving. In this paper, the KEPCO's Jeju-Do model project for DSM, especially for Demand Controller, is presented. Demand Controller was evaluated to have the very high economical efficiency against the investment in equipment, as compared with another DSM tools. There were some serious problem to apply Demand Controller to many customers in the aspect to synchronization with KEPCO's watthour meter. But these problems have solved by Keyin's new Demand Controller using vision algorithm.

  • PDF

Electric Power Supply & Demand measures in korea (국내 전력수급 방안)

  • Lee, Ki-Seon
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.2
    • /
    • pp.29-33
    • /
    • 2011
  • In recent years, maximum electric power demand has been increasing steadily. But, Electric Power Supply & Demand problem is occurring due to lack of electric power reserve ratio caused by electric power peak. For this reason, I investigated the current status of the Electric Power Supply & Demand and established Electric Power Supply & Demand and established Electric Power Supply & Demand measures. I will expect that this paper will be contributed balanced and stable Electric Power Supply & Demand management.

  • PDF

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

A Study on the Load Forecasting Methods of Peak Electricity Demand Controller (최대수요전력 관리 장치의 부하 예측에 관한 연구)

  • Kong, In-Yeup
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, load forecasting of the unit of seconds using the Exponential Smoothing Methods, ARIMA model, Kalman Filter is proposed. Also simulation of load forecasting of the unit of the seconds methods and existing forecasting methods is performed and analyzed the accuracy. As a result of simulation, the accuracy of load forecasting methods in seconds is higher.

Peak Load Estimation of Pole-Transformer in Summer Season Considering the Cooling Load of Customer (수용가 냉방부하를 고려한 하절기 주상변압기 최대부하 추정)

  • Yun, Sang-Yun;Kim, Jae-Chul;Kim, Gi-Hyun;Im, Jin-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • In this paper, we propose a method for estimating the peak load of pole-transformer in summer season considering the degree of cooling load possession in customer. The cooling load of customer is selected as the most reliable parameter of peak load in summer season. The proposed estimation method is restricted to the aspect of load management for pole-transformer. The main concept of proposed method is that the error of peak load estimation using load regression equation reduces with considering the degree of cooling load possession in customer. We propose an index for estimation of cooling load possession in each customer. The proposed index is defined as cooling load possession in customer (CLPC) and obtained from the increment of monthly electric energy. The membership function for deciding the uncertainty of cooling load possession in customer is used. The database of pole-transformer in Korea Electric Power Corporation (KEPCO) is used for case studies. Through the case studies, we verify that the proposed method reduces the error of peak load estimation than the conventional method in domestic.

  • PDF

Through load prediction and solar power generation prediction ESS operation plan(Guide-line) study (부하예측 및 태양광 발전예측을 통한 ESS 운영방안(Guide-line) 연구)

  • Lee, Gi-Hyun;Kwak, Gyung-il;Chae, U-ri;KO, Jin-Deuk;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.267-278
    • /
    • 2020
  • ESS is an essential requirement for resolving power shortages and power demand management and promoting renewable energy at a time when the energy paradigm changes. In this paper, we propose a cost-effective ESS Peak-Shaving operation plan through load and solar power generation forecast. For the ESS operation plan, electric load and solar power generation were predicted through RMS, which is a statistical measure, and a target load reduction guideline for one hour was set through the predicted electric load and solar power generation amount. The load and solar power generation amount from May 6th to 10th, 2019 was predicted by simulation of load and photovoltaic power generation using real data of the target customer for one year, and an hourly guideline was set. The average error rate for predicting load was 7.12%, and the average error rate for predicting solar power generation amount was 10.57%. Through the ESS operation plan, it was confirmed that the hourly guide-line suggested in this paper contributed to the peak-shaving maximization of customers.Through the results of this paper, it is expected that future energy problems can be reduced by minimizing environmental problems caused by fossil energy in connection with solar power and utilizing new and renewable energy to the maximum.

A Study on Current Status Survey and Utilization of Emergency Generator Installation (비상발전기 설치 실태조사 및 활용 방안에 대한 고찰)

  • Lim, Hyun-Sung;Han, Un-Ki;Jung, Jin-Soo;Park, Chan-Eom;Song, Young-Sang;Choi, Jong-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.34-38
    • /
    • 2015
  • Recently, the power supply situation has deteriorated and the plan has issued to utilize of emergency generators for securing standby power. If a part of Emergency Generators was utilized by peak shaving, it can be avoiding over-investment in supply power facility. In this paper we investigate management of Emergency Generator and understand the current situation. So, we verify demand response resource possibility of Emergency Generator.

An Analysis on Power Demand Reduction Effects of Demand Response Systems in the Smart Grid Environment in Korea

  • Won, Jong-Ryul;Song, Kyung-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1296-1304
    • /
    • 2013
  • This study performed an analysis on power demand reduction effects exhibited by demand response programs, which are advanced from traditional demand-side management programs, in the smart grid environment. The target demand response systems for the analysis included incentive-based load control systems (2 month-ahead demand control system, 1~5 days ahead demand control system, and demand bidding system), which are currently implemented in Korea, and price-based demand response systems (mainly critical peak pricing system or real-time pricing system, currently not implemented, but representative demand response systems). Firstly, the status of the above systems at home and abroad was briefly examined. Next, energy saving effects and peak demand reduction effects of implementing the critical peak or real-time pricing systems, which are price-based demand response systems, and the existing incentive-based load control systems were estimated.