• 제목/요약/키워드: peak picking technique

검색결과 9건 처리시간 0.022초

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

심음도 스펙트럼의 1, 2차 도함수를 이용한 형성음 주파수 추출 기술 (Formant Detection Technique for the Phonocardiogram Spectra Using the 1st and 2nd Derivatives)

  • 김동준
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1605-1610
    • /
    • 2015
  • This study describes a new method to analyze phonocardiogram acquired from electronic stethoscope. The method uses the formant frequencies of linear prediction spectrum of the phonocardiogram and proposes a novel method for formant detection using the smoothing and the first and second derivatives. For this, stethoscope sounds are acquired in university hospital. The stethoscope signals are preprocessed and analyzed by the Burg algorithm, a kind of linear prediction analysis. Based on the linear prediction spectra, the formant frequencies are estimated. The proposed method has shown better performance in formant frequency detection than the conventional peak picking method.

Reconstruction of missing response data for identification of higher modes

  • Shrikhande, Manish
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.323-336
    • /
    • 2011
  • The problem of reconstruction of complete building response from a limited number of response measurements is considered. The response at the intermediate degrees of freedom is reconstructed by using piecewise cubic Hermite polynomial interpolation in time domain. The piecewise cubic Hermite polynomial interpolation is preferred over the spline interpolation due to its trend preserving character. It has been shown that factorization of response data in variable separable form via singular value decomposition can be used to derive the complete set of normal modes of the structural system. The time domain principal components can be used to derive empirical transfer functions from which the natural frequencies of the structural system can be identified by peak-picking technique. A reduced-rank approximation for the system flexibility matrix can be readily constructed from the identified mass-orthonormal mode shapes and natural frequencies.

수평적 속도변화대에서 자동속도분석 알고리즘을 이용한 속도분석 실험연구 (An Experimental Study on Velocity Analysis by Automatic Velocity Analysis Algorithms in Layers Having Lateral Velocity Anomaly)

  • 윤광진;양승진
    • 자원환경지질
    • /
    • 제30권5호
    • /
    • pp.469-476
    • /
    • 1997
  • In the conventional velocity analysis, the peaks of a semblance panel are picked and the stacking velocities of the peaks are assumed as RMS velocities from which interval velocities are determined. This velocity analysis technique is correct only for horizontal homogeneous layes and incurs error in a layer whose velocity varies laterally. Tediousness of peak picking and error in velocity analysis can be reduced by automatic velocity analysis techniques. An automatic velocity analysis algorithm has been presented in order to improve these problems by considering the stacking velocity from the view point of interval velocity model and by relating the stacking velocity and the interval velocity with the traveltimes. In this paper, we apply the automatic velocity analysis method to simple models having lateral velocity anomaly to verify the effectivenesses and limits of this method. From the results of numerical experiments, we can determine the interval velocites without pickings of the stacking velocities in the one-dimensional velocity analysis and the general patterns of the laterally varying interval velocities appear in the two-dimensional case. However, the interval velocity and the depth of velocity anomaly determined by two-dimensional automatic velocity analysis are somewaht discrepant in those of the theoretical model.

  • PDF

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

El-centro 지진파형을 이용한 CAFB의 최적화 및 교량 지진응답실험에 관한 연구 (A Study on the Optimization and Bridge Seismic Response Test of CAFB Using El-centro Seismic Waveforms)

  • 허광희;이진옥;서상구;박진용;전준용
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.67-76
    • /
    • 2020
  • This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).

운용모드해석에 기반한 사장교의 장단기 동특성 평가 (Evaluation of Short and Long-Term Modal Parameters of a Cable-Stayed Bridge Based on Operational Modal Analysis)

  • 박종칠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권4호
    • /
    • pp.20-29
    • /
    • 2022
  • 상시진동을 이용하여 구조계의 동특성을 추출하는 운용모드해석 기법은 케이블교량 구조건전성모니터링의 한 분야로써 다양한 연구와 실험적 검증이 수행되어왔다. 본 연구에서는 두 번에 걸친 상시진동실험과 함께 3년간의 장기 계측을 통해 수집된 가속도 데이터를 이용하여 공용 중인 사장교의 장단기 동특성을 평가하였다. 교량 준공 이후 6년과 19년이 경과한 시기에 실시한 고해상도 상시진동실험으로부터 0.1 ~ 2.5 Hz 대역에서 27개 수직모드(휨, 비틈)와 1개 수평모드를 추출하였다. 운용모드해석에 기반한 동특성 추출은 PP기법, ERADC기법, FDD기법, TDD기법을 적용하였으며, 적용한 기법들 간에 유의미한 차이가 없는 것을 확인하였다. 장기 계측 고유진동수와 환경 요인(온도, 바람)에 대한 상관성 분석으로부터 온도 변화가 고유진동수 변동에 지배적인 영향인자임을 확인하였다. 대상교량의 고유진동수 감소 경향은 구조성능과 일체성이 변한 것이 아니라 두 번의 상시진동실험 간 온도 차이에 의한 환경영향이 컸음을 밝혔다. 또한 TDD기법 적용 시, 지연이 0에서 자기상관이 1이 되도록 시퀀스를 정규화하는 알고리즘을 추가하여 모드형상 추출의 정확도를 개선하였다.

효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로 (Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms)

  • 허광희;이진옥;서상구;정유승;전준용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.23-32
    • /
    • 2020
  • 압축센싱 기술인 CAFB는 대상 구조물의 원시신호를 목적된 주파수 범위의 신호로 압축하여 획득하도록 개발되었다[27]. 이때 압축센싱을 위해 CAFB는 대상 구조물의 목적된 주파수 범위에 따라 다양한 기준신호로 최적화 될 수 있다. 또한, 최적화된 CAFB는 지진과 같은 돌발/위험상황에서도 대상 구조물의 유효한 구조응답을 효율적으로 압축할 수 있어야 한다. 본 논문에서는 상대적으로 유연한 구조물의 효율적인 구조 건전도 모니터링을 위하여 목적된 주파수 범위를 10Hz 미만으로 설정하고, 이를 위한 CAFB의 최적화 방법과 지진상황에서 CAFB의 지진응답성능을실험적으로 평가하였다. 이를 위해 본 논문에서는, 먼저 Kobe 지진파형을 이용하여 CAFB를 최적화하였고, 이를 자체 개발한 무선 IDAQ 시스템에 임베디드 하였다. 그리고, Kobe 지진파형을 이용하여 2경간 교량에 대한 지진응답실험을 수행하였다. 마지막으로 CAFB가 내장된 IDAQ 시스템을 이용하여 실시간으로 2경간 교량의 지진응답을 무선으로 획득하고, 획득된 압축신호는 원시신호와 상호 비교하였다. 실험의 결과로부터 압축신호는 원시신호와 대비하여 우수한 응답성능과 데이터 압축효과를 보였고, 또한 CAFB는 지진상황에서도 구조물의 유효한 구조응답을 효과적으로 압축센싱할 수 있었다. 최종적으로 본 논문에서는 목적된 주파수 범위(10Hz 미만)에 적합하도록 CAFB의 최적화 방법을 제시하였고, CAFB는 지진상황의 계측-모니터링을 위해 경제적이고 효율적인 데이터 압축센싱 기술임을 증명하였다.