• Title/Summary/Keyword: peak load management

Search Result 144, Processing Time 0.022 seconds

POWER LOAD MANAGEMENT FOR PEAK LOAD CLIPPING (POWER LOAD DIRECT CONTROL METHOD) (Peak부하(負荷) 억제(抑制)를 위한 전력부하관리(電力負荷管理) (전력부하(電力負荷) 직접제어방식(直接制御方式)))

  • Kim, Yeong-Han;Lee, Hyo-Sang;Kim, Jai-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.246-250
    • /
    • 1989
  • Owing to the rapid development of economy and the higher living standard of people, electricity demands have growth and the peak load has been increased rapidly. To cope with this impacts and to reduce the cost of service,utilities are conserned about power load management program. This paper shows a scheme of power load control and the basic structure of direct load control system. And also radio control method using the public pager which is one of the best economical and serviceable method in techniques will be introduced briefly.

  • PDF

A Study on the Intelligent Load Management System Based on Queue with Diffusion Markov Process Model (확산 Markov 프로세스 모델을 이용한 Queueing System 기반 지능 부하관리에 관한 연구)

  • Kim, Kyung-Dong;Kim, Seok-Hyun;Lee, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.891-897
    • /
    • 2009
  • This paper presents a novel load management technique that can lower the peak demand caused by package airconditioner loads in large apartment complex. An intelligent hierarchical load management system composed of a Central Intelligent Management System(CIMS) and multiple Local Intelligent Management Systems(LIMS) is proposed to implement the proposed technique. Once the required amount of the power reduction is set, CIMS issues tokens, which can be used by each LIMS as a right to turn on the airconditioner. CIMS creates and maintains a queue for fair and proper allocation of the tokens among the LIMS requesting tokens. By adjusting the number tokens and queue management policies, desired power reduction can be achieved smoothly. The Markov Birth and Death process and the Balance Equations utilizing the Diffusion Model are employed for evaluation of queue performances during transient periods until the static balances among the states are achieved. The proposed technique is tested using a summer load data of a large apartment complex and give promising results demonstrating the usability in load management while minimizing the customer inconveniences.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

Development of an Electrical Load Management System (심야전력을 이용한 에너지 저장 및 부하율 향상에 대한 연구)

  • 박석인;정봉만;한수빈;정학근;김규덕;유승원
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.226-229
    • /
    • 1999
  • The recent problems such as the rapid increase o electricity consumption, the large variation of electrical loads, and the sitting difficulty for new power plants could become a barrier to stable electrical power supply. Consequently, an electrical load management technology has become important, by which an electricity can be stored during off-peak time and efficiently used during peak time. The technology provides a variety of direct or indirect benefits which include, for utilities, reduction of new power plants, economical electricity production, and improved efficiency and reliability of power system and for consumers, low prices o electricity. The study is to develop a proto-type load management system and its application technology for a peak shaving. In the system, conventional batteries are used as energy storage device.

  • PDF

An Application of Direct Load Control Using Control Logic Based On Load Properties (부하특성별 제어로직을 적용한 직접 부하제어 시스템 활용)

  • Doo, Seog-Bae;Kim, Jeoung-Uk;Kim, Hyeong-Jung;Kim, Hoi-Cheol;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2668-2670
    • /
    • 2004
  • This paper presents an advanced load control method in Direct Load Control(DLC) system. It is important to aggregate a various demand side resource which is surely controllable at the peak power time for a successful DLC system. Because the DLC system use simple On/Off control that may cause a harmful effect on a plant to reduce a peak power load, there are some restriction on deriving a voluntary participation of demand side resource. So it needs a new approach to direct load control method, and this paper describes an advanced load control method using control logic which is based on load properties. This method is easy to take account of a various characteristic of load, it can be use as a dynamic control logic which is good for adaptive control. The suggested control logic method is verified by modeling a control logic for a turbo refrigerator which affects on peak power in summer season.

  • PDF

The research on supporting method of electric peak management for building facilities of heating and cooling (건물냉난방설비관련 전력피크관리사업 지원방안 연구)

  • Yang, Seung-Kwon;Lee, Han-Byul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • This paper gives the support method of DSM program(power load leveling for heating and cooling facilities on building). As the national power peak load increases recently, the peak load reduction is needed. So we studied about remote controlling of power load from heating/cooling facilities on building during peak times. To adopt new DSM program, it is very important to design DSM customer supporting system. So in this paper, we dealt with the result of customer survey, and the DSM potential regarding heating/cooling facilities on building. In conclusion, the peak reduction program of heating/cooling facilities is very important and the incentive of customer should be consist of two incentive types as an installation and power reduction.

  • PDF

A Study on Load Control Method for Home Energy Management System (H-EMS) Considering the Human Comfort (주거자 만족도를 고려한 주택 에너지관리 시스템의 부하제어 방법 연구)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1025-1032
    • /
    • 2014
  • The effective energy management method will provide the significant advantage to the residential customers under real time pricing plan since it can reduce the electricity charge by controlling the energy consumption according to electricity rate. The earlier studies for load management mainly aim to minimize the electricity charges and peak power but put a less emphasis on the human comfort dwelling in the residence. The discomfort and displeasure from the energy management only focusing on reduction of electricity charge will make the residential customer reluctant to enroll the real time pricing plan. In this paper, therefore, we propose optimal load control strategy which aim to achieve not only minimizing the electricity charges but also maintaining human comfort by introducing "the human comfort coefficient." Using the human comfort coefficient, the energy management system can reflect the various human personality and control the loads within the range that the human comfort is maintained. Simulation results show that proposed load control strategy leads to significant reduction in the electricity charges and peak power in comparison with the conventional load management method.

A Study on the Load Management for the Stability of Power Supply in summer (하계전력수급 안정을 위한 부하관리 대책)

  • Cho, Kyou-Seung;Kang, Won-Koo;Lee, Youn-Seob
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.17-18
    • /
    • 1991
  • In electric Industry, the improvement of load factor by flattening load has been considered to be more important than any other tasks and has received wide concern and interest. Especially while annual peak load had occurred early evening in winter during past decades, but we found the trend has changed so that annual peak load occurred during the daytime in summer since 1981. In this paper we introduce various method for the load management.

  • PDF

Daily Peak Load Forecasting for Electricity Demand by Time series Models (시계열 모형을 이용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jeong-Soon;Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.349-360
    • /
    • 2013
  • Forecasting the daily peak load for electricity demand is an important issue for future power plants and power management. We first introduce several time series models to predict the peak load for electricity demand and then compare the performance of models under the RMSE(root mean squared error) and MAPE(mean absolute percentage error) criteria.

An Adaptive Control of Smart Appliances with Peak Shaving Considering EV Penetration (전기자동차 침투율을 고려한 피크 부하 저감용 스마트 기기의 적응적 제어)

  • Haider, Zunaib Maqsood;Malik, Farhan H.;Rafique, M. Kashif;Lee, Soon-Jeong;Kim, Jun-Hyeok;Mehmood, Khawaja Khalid;Khan, Saad Ullah;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.730-737
    • /
    • 2016
  • Electric utilities may face new threats with increase in electric vehicles (EVs) in the personal automobile market. The peak demand will increase which may stress the distribution network equipment. The focus of this paper is on an adaptive control of smart household appliances by using an intelligent load management system (ILMS). The main objectives are to accomplish consumer needs and prevent overloading of power grid. The stress from the network is released by limiting the peak demand of a house when it exceeds a certain point. In the proposed strategy, for each smart appliance, the customers will set its order/rank according to their own preferences and then system will control the household loads intelligently for consumer reliability. The load order can be changed at any time by the customer. The difference between the set and actual value for each load's specific parameter will help the utility to estimate the acceptance of this intelligent load management system by the customers.