• Title/Summary/Keyword: peak flow ratio

Search Result 194, Processing Time 0.027 seconds

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature (모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막)

  • You, Younggoon;Jeong, Jinyong;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Understanding on MR Perfusion Imaging Using First Pass Technique in Moyamoya Diseases (Moyamoya 질환에서 1차 통과기법을 이용한 자기공명관류영상의 이해)

  • Ryu, Young-Hwan;Goo, Eun-Hoe;Jung, Jae-Eun;Dong, Kyung-Rae;Choi, Sung-Hyun;Lee, Jae-Seung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • The purpose of this study was to investigated the usefulness of MR perfusion image comparing with SPECT image. A total of pediatric 30 patients(average age : 7.8) with Moyamoya disease were performed MR Perfusion with 32 channel body coil at 3T from March 01, 2010 to June 10, 2010. The MRI sequences and parameters were as followed : gradient Echo-planar imaging(EPI), TR/TE : 2000ms/50ms, FA : $90^{\circ}$, FOV : $240{\times}240$, Matrix : $128{\times}128$, Thickness : 5mm, Gap : 1.5mm. Images were obtained contrast agent administrated at a rate of 1mL/sec after scan start 10s with a total of slice 1000 images(50 phase/1 slice). It was measured with visual color image and digitize data using MRDx software(IDL version 6.2) and also, it was compared of measurement with values of normal and abnormal ratio to analyze hemodynamic change, and a comparison between perfusion MR with technique using Warm Color at SPECT examination. On MR perfusion examination, the color images from abnormal region to the red collar with rCBV(relative cerebral blood volume) and rCBF(relative cerebral blood flow) caused by increase cerebral blood flow with brain vascular occlusion in surrounding collateral circulation advancement, the blood speed relatively was depicted slowly with blue in MTT(Mean Transit Time) and TTP(Time to Peak) images. The region which was visible abnormally from MR perfusion examination visually were detected as comparison with the same SPECT examination region, would be able to confirm the identical results in MMD(Moyamoya disease)judgments. Hymo-dynamic change in MR perfusion examination produced by increase and delay cerebral blood flow. This change with digitize data and being color imaging makes enable to distinguish between normal and abnormal area. Relatively, MR perfusion examination compared with SPECT examination could bring an excellent image with spatial resolution without radiation expose.

  • PDF

An Experimental Study of the Turbulent Swirling Flow and Heat Transfer Downstream of an Abrupt Expansion in a Circulat Pipe with Uniform Heat Flux (급확대관내에서 류유선회유동의 열전달에 관한 연구)

  • 권기린;허종철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.138-152
    • /
    • 1996
  • Many studies of heat transfer on the swirling flow or unswirled flow in a abrupt pipe expansion are widely carried out. The mechanism is not fully found evidently due to the instabilities of flow in a sudden change of the shape and appearance of turbulent shear layers in a recirculation region and secondary vortex near the corner. The purpose of this study is to obtain data through an experimental study of the swirling flow and heat transfer downstream of an abrupt expansion in a circular pipe with uniform heat flux. Experiments were carried out for the turbulent flow nd heat transfer downstream of an abrupt circular pipe expansion. The uniform heat flux condition was imposed to the downstream of the abrupt expansion by using an electrically heated pipe. Experimental data are presented for local heat transfer rates and local axial velocities in the tube downstream of an abrupt 3:1 & 2:1 expansion. Air was used as the working fluid in the upstream tube, the Reynolds number was varied from 60, 00 to 120, 000 and the swirl number range (based on the swirl chamber geometry, i.e. L/d ratio) in which the experiments were conducted were L/d=0, 8 and 16. Axial velocity increased rapidly at r/R=0.35 in the abrupt concentric expansion turbulent flow through the test tube in unswirled flow. It showed that with increasing axial distance the highest axial velocities move toward the tube wall in the case of the swirling flow abrupt expansion. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk temperatures ranging from 24.deg. C to 71.deg. C. In swirling flow, the wall temperature showed a greater increase at L/d=16 than any other L/d. The bulk temperature showed a minimum value at the pipe inlet, it also exhibited a linear increase with axial distance along the pipe. As swirl intensity increased, the location of peak Nu numbers was observed to shift from 4 to 1 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 2.2 to 8.8 times larger than fully developed tube flow values.

  • PDF

Contribution of Non-Point Pollution to Water Quality and Runoff Characteristics from Agricultural Area of the Upstream Watersheds of Lake Chinyang

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2013
  • In this study, non-point source(NPS) contribution was investigated based on flow rates and water qualities of streams into the lake during rainfall events. Event mean concentration(EMC) and the pollution loads were calculated to establish a database for NPS control measurement in the survey area, and so on. The runoff characteristics of NPS were investigated and estimated on the basis of the ratio of an agricultural to forest area in the stream of sub-catch basin during rainfall events. Non-point source pollution loads were also calculated to establish a database for NPS control measure in the upstream lake Chinyang. At a rainfall event, BOD concentrations rise sharply at the early peak time of runoff, however, peaks of TSS concentration were observed at the similar time of peak flow. This was a phenomenon shown at the watersheds caused by forest and geological types. The discharged EMC range was 2.9-4.8 mg/L in terms of BOD. The discharged EMC range was 6.2-8.2 mg/L in terms of SS. The discharged EMCs of T-N and T-P were 1.4-2.5 mg/L and 0.059-0.233 mg/L, respectively. Total BOD loading rate through the 3 tributaries to the lake Chinyang was 1,136 kg/d during dry weather. The upper watershed area of the Nam-river dam in this study was divided into 14 catchment basins based on the Korean guideline for total maximum daily load(TMDL) of water quality pollutants. The higher the agricultural land-use ratio, the more NPS loading rate discharged, but the more occupied a forest area, the lower more NPS loading rate discharged. In an agricultural land-use area more than 20%, the increase of NPS loadings might be dramatically diffused by increasing the integrated complex-use like vinyl-house facilities and fertilizer use etc. according to the effective land-use utilization. The NPS loading rates were BOD 0.3 $kg/ha{\cdot}day$, SS 0.21 $kg/ha{\cdot}day$, TN 0.02 $kg/ha{\cdot}day$, TP 0.005 $kg/ha{\cdot}day$ under less than 10% agricultural land-use. In agricultural land-use of 20%-50%, these values were investigated in the range of 0.32 $kg/ha{\cdot}day$-0.73 $kg/ha{\cdot}day$ for BOD, 0.92 $kg/ha{\cdot}day$-3.32 $kg/ha{\cdot}day$ for SS, 0.70 $kg/ha{\cdot}day$-0.90 $kg/ha{\cdot}day$ TN, 0.03 $kg/ha{\cdot}day$-0.044 $kg/ha{\cdot}day$ for TP.

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Pollutant Load Characteristics from a Small Mountainous Agricultural Watershed in the North Han River Basin (북한강 중류 산간농업 소하천에서의 오염부하특성분석)

  • Shin, Yong-Chul;Choi, Joong-Dae;Lim, Kyoung-Jae;Shim, Hyeok-Ho;Lyou, Chang-Won;Yang, Jae E.;Yoo, Kyung-Yoal
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.83-92
    • /
    • 2005
  • Natural environment of the Wolgokri stream watershed, located in Chuncheon, Gangwon province, Korea, has been well preserved as a traditional agricultural watershed. To analyze characteristics of NPS pollution generated from an mountainous agricultural watershed, the flow and water qualities of the study watershed were monitored and were analyzed to estimate pollution loads. Annual runoff volume ratio was $70.4\%$. Concentrations of T-N, T-p, COD, and TOC were higher when monthly rainfall was between $0\~30mm$ than those when monthly rainfall was between $30\~70mm$. However, the concentrations varied considerably when monthly rainfall was higher than 100mm. The flow weighted mean concentrations(mg/L) of BOD, COD, TOC, $NO_3-N$, T-N, T-P and SS were 1.96, 2.72, 3.32, 1.41, 4.70, 0.187 and 13.36, respectively. The BOD, SS, T-N and T-P loads of July, 2004 were $48\%,\;17\%,\;51\%\;and\;32\%$ of annual load, respectively. The BOD, COD, TOC, $NO_3-N$, T-N, T-p, and SS loads (kg/ha) from Mar. 2004 to Apr. 2005 were 19.09, 26.55, 32.39, 13.85, 45.92, 1.887 and 130.18, respectively. The highest concentrations of BOD, NO3-N, T-N, T-p, SS, COD and TOC were found before the flow reached the peak runoff, possibly due to the first flushing effect. Generally, pollution loads of the Wolgokri watershed were not that significant. Phosphorus load, however, was higher enough to cause eutrophication in the receiving water body It was recommended that best management practices need to be implemented to reduce phosphorus sources.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.

A Study for an Automatic Calibration of Urban Runoff Model by the SCE-UA (집합체 혼합진화 알고리즘을 이용한 도시유역 홍수유출 모형의 자동 보정에 관한 연구)

  • Kang, Tae-Uk;Lee, Sang-Ho;Kang, Shin-Uk;Park, Jong-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.15-27
    • /
    • 2012
  • SWMM (Storm Water Management Model) has been widely used in the world as a typical model for flood runoff analysis of urban areas. However, the calibration of the model is difficult, which is an obstacle to easy application. The purpose of the study is to develop an automatic calibration module of the SWMM linked with SCE-UA (Shuffled Complex Evolution-University of Arizona) algorithm. Generally, various objective functions may produce different optimization results for an optimization problem. Thus, five single objective functions were applied and the most appropriate one was selected. In addition to the objective function, another objective function was used to reduce peak flow error in flood simulation. They form a multiple objective function, and the optimization problem was solved by determination of Pareto optima. The automatic calibration module was applied to the flood simulation on the catchment of the Guro 1 detention reservoir and pump station. The automatic calibration results by the multiple objective function were more excellent than the results by the single objective function for model assessment criteria including error of peak flow and ratio of volume between observed and calculated flow. Also, the verification results of the model calibrated by the multiple objective function were reliable. The program could be used in various flood runoff analysis in urban areas.

Determination of Minimal Pressure Support Level During Weaning from Pressure Support Ventilation (압력보조 환기법으로 기계호흡 이탈시 최소압력보조(Minimal Pressure Support) 수준의 결정)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Lim, Chae-Man;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.380-387
    • /
    • 1998
  • Background: Minimal pressure support(PSmin) is a level of pressure support which offset the imposed work of breathing(WOBimp) developed by endotracheal tube and ventilator circuits in pressure support ventilation While the lower applied level of pressure support compared to PSmin could induce respiratory muscle fatigue, the higher level than PSmin could keep respiratory muscle rest resulting in prolongation of weaning period during weaning from mechanical ventilation PSmin has been usually applied in the level of 5~10 cm$H_2O$, but the accurate level of PSmin is difficult to be determinated in individual cases. PSmin is known to be calculated by using the equation of "PSmin = peak inspiratory flow rate during spontaneus ventilation$\times$total ventilatory system resistance", but correlation of calculated PSmin and measured PSmin has not been known. The objects of this study were firstly to assess whether customarily applied pressure support level of 5~10 cm$H_2O$ would be appropriate to offset the imposed work of breathing among the patients under weaning process, and secondly to estimate the correlation between the measured PSmin and calculated PSmin. Method : 1) Measurement of PSmin : Intratracheal pressure changes were measured through Hi-Lo jet tracheal tube (8mm in diameter, Mallinckroft, USA) by using pulmonary monitor(CP-100 pulmonary monitor, Bicore, USA), and then pressure support level of mechanical ventilator were increased until WOBimp was reached to 0.01 J/L or less. Measured PSmin was defined as the lowest pressure to make WOBimp 0.01 J/L or less. 2) Calculation of PSmin : Peak airway pressure(Ppeak), plateau airway pressure(Pplat) and mean inspiratory flow rate of the subjects were measured on volume control mode of mechanical ventilation after sedation. Spontaneous peak inspiratory flow rates were measured on CPAP mode(O cm$H_2O$). Thereafter PSmin was calculated by using the equation "PSmin = peak inspiratory flow rate$\times$R, R = (Ppeak-Pplat)/mean inspiratory flow rate during volume control mode on mechanical ventilation". Results: Sixteen patients who were considered as the candidate for weaning from mechanical ventilation were included in the study. Mean age was 64(${\pm}14$) years, and the mean of total ventilation times was 9(${\pm}4$) days. All patients except one were males. The measured PSmin of the subjects ranged 4.0~12.5cm$H_2O$ in 14 patients. The mean level of PSmin was 7.6(${\pm}2.5\;cmH_2O$) in measured PSmin, 8.6 (${\pm}3.25\;cmH_2O$) in calculated PSmin Correlation between the measured PSmin and the calculated PSmin is significantly high(n=9, r=0.88, p=0.002). The calculated PSmin show a tendancy to be higher than the corresponding measured PSmin in 8 out of 9 subjects(p=0.09). The ratio of measured PSmin/calculated PSmin was 0.81(${\pm}0.05$). Conclusion: Minimal pressure support levels were different in individual cases in the range from 4 to 12.5 cm$H_2O$. Because the equation-driven calculated PSmin showed a good correlation with measured PSmin, the application of equation-driven PSmin would be then appropriate compared with conventional application of 5~10 cm$H_2O$ in patients under difficult weaning process with pressure support ventilation.

  • PDF

Numerical Simulation of Flow past Forced and Freely Vibrating Cylinder at Low Reynolds Number

  • Jung, Jae Hwan;Nam, Bo Woo;Jung, Dong-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.165-173
    • /
    • 2017
  • This study aims at validating simulations of the forced and freely vibrating cylinders at Reynolds number of approximately 500 in order to identify the capability of the CFD code, and to establish the analysis process of the vortex-induced vibration (VIV). The direct numerical and large eddy simulations were employed to resolve the various length scales of the vortices, and the morphing technique was used to consider a motion of the circular cylinder. For the forced vibration case, both in- and anti-phase VIV processes were observed regarding the frequency ratio. Namely, when the frequency ratio approaches to unity, the synchronization/lock-in process occurs, leading to substantial increases in drag and lift coefficients. This is strongly linked with the switch in timing of the vortex formation, and this physical tendency is consistent with that of Blackburn and Henderson (J. Fluid Mech., 1999, 385, 255-286) as well as force coefficients. For the free oscillation case, the mass and damping ratio of 50.8 and 0.0024 were considered based on the study of Blackburn et al. (J. Fluid Struct., 2000, 15, 481-488) to allow the direct comparison of simulation results. The simulation results for a peak amplitude of the cylinder and a shedding mode are reasonably comparable to that of Blackburn et al. (2000). Consequently, based on aforementioned results, it can be concluded that numerical methods were successfully validated and the calculation procedure was well established for VIV analysis with reasonable results.