• Title/Summary/Keyword: peak flood discharge

Search Result 155, Processing Time 0.025 seconds

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

Estimation of Mega Flood Using Mega Rainfall Scenario (거대강우 시나리오를 이용한 거대홍수량 산정)

  • Han, Daegun;Kim, Deokhwan;Kim, Jungwook;Jung, Jeawon;Lee, Jongso;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.90-97
    • /
    • 2019
  • In recent years, flood due to the consecutive storm events have been occurred and property damage and casualties are in increasing trend. This study calls the consecutively occurred storm events as a mega rainfall scenario and the discharge by the scenario is defined as a mega flood discharge. A mega rainfall scenario was created on the assumption that 100-year frequency rainfall events were consecutively occurred in the Gyeongancheon stream basin. The SSARR (Streamflow Synthesis and Reservoir Regulation) model was used to estimate the mega flood discharge using the scenario in the basin. In addition, in order to perform more reasonable runoff analysis, the parameters were estimated using the SCE_UA algorithm. Also, the calibration and verification were performed using the objective functions of the weighted sum of squared of residual(WSSR), which is advantageous for the peak discharge simulation and sum of squared of residual(SSR). As a result, the mega flood discharge due to the continuous occurrence of 100-year frequency rainfall events in the Gyeongan Stream Basin was estimated to be 4,802㎥/s, and the flood discharge due to the 100-year frequency single rainfall event estimated by "the Master Plan for the Gyeongancheon Stream Improvement" (2011) was 3,810㎥/s. Therefore, the mega flood discharge was found to increase about 992㎥/s more than the single flood event. The results of this study can be used as a basic data for Comprehensive Flood Control Plan of the Gyeongan Stream basin.

Optimal Flood Control Volume in the Irrigation Reservoir (관개저수지의 적정 홍수조절용량 설정방법)

  • 김태철;문종필;민진우;이훈구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Water level of irrigation reservoir during the flood season could be kept to a certain level, so called, flood control level by releasing the flood inflow in advance in order to reduce the peak discharge of next coming flood and the damage of inundation. Concept of restriction intensity of water supply was introduced to evaluate the influence of flood control volume on the irrigation water supply. Restriction intensity can be calculated by multiplying the ratio of restriction to the days of restriction which are obtained from the operation rule curve and daily water level of irrigation reservoir and it has the dimension of % day. The method of restriction intensity was applied to the Yedang irrigation reservoir with the observed data of 30 years to review whether the present flood control volume is reasonable or not, and suggest the optimal flood control volume, if possible.

  • PDF

Integrated Storage Function Model with Fuzzy Control for Flood Forecasting (II) - Theory and Proposal of Model - (홍수예보를 위한 통합저류함수모형의 퍼지제어 (II) - 이론의 모형의 수립 -)

  • Lee, Jeong-Gyu;Kim, Han-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.701-709
    • /
    • 2000
  • Integrated storage function model (ISFM) is applied to some rainfall-runoff events of the selected basins in Korea to show validity of the proposed model. Comparing the numerical results of the model with the field measurements, the simulated hydrographs and peak flood discharges for the most part showed good agreements, except the occurrence time of the peak discharges which showed a bit discrepancy, and they showed it was very hard to have a sufficient lead-time to forecast the flood when the upstream inflow of the channel reach was more dominant than the inflow from the residual watershed of the channel.hannel.

  • PDF

Hydrological Studies on the Comparison and the Derivation of Unit Hydrography in the small River Systems. (소하천수계의 단위유량도 유도 및 비교에 관한 수문학적 고찰)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.3
    • /
    • pp.4739-4749
    • /
    • 1978
  • This studies were conducted to derive synthetic unitgraphs and triangular unitgraphs correlated with watershed characteristics which can be used to the estimation and control of flood for the rational development of Agricultural water resources. Derived Synthetic unitgraphs and Triangular unitgraphs can be applied to the ungaged watersheds were compared with average unitgraphs by observed data. Seven small watersheds were selected as studying basins Han, Geum, Nakdong, Yeongsan and Inchon river system. The results summarized for these studies are as follows: 1. Average unitgraphs by observed data and dimensionless unitgraphs for synthesis were derived for all river systems. 2. Peak discharge per unit area of the unitgraph, qp, was derived as qp=10-0.389-0.0424Lg with a high significance. 3. Formulas for the base width of unitgraph of 50 and 75 percent for peak flow for each water systems was adopted as Table 5. 4. The base length of the unitgraph, Tb, in hours in connection with time to peak, Tp, in hours was expressed as Tb =4.3Tp. 5. Peak discharge, Qp, were obtained as Table 6 by the Triangular form to all subwatersheds. 6. Relative errors in the peak discharge of the synthetic unitgraphs showed to be 7.3 percent to the peak of observed average unitgraphs except errors of peak discharge for Yeongsan river system. This indicates that Synthetic unitgraphs for the small watersheds of Han, Geum, Nakdong and Inchon river systems can be applied to the ungaged watersheds. On the other hand, It was confirmed that the accuracy of Instantaneous Unit Hydrograph with only 1.6 percent as relative errors was approaching more closely to the observed average unitgraph than that of synthetic unitgraph with relative errors. 23.9 percent for Yeongsan river system. 7. Errors in the peak discharge of the triangular unitgraph to the observed average unitgraph showed to be 0.6 percent to 7.5 percent which can be regarded as a high precision within the range of 200 to 500$\textrm{km}^2$ in area. On the contrary, application of triangular unitgraph within the range of 200$\textrm{km}^2$ in area has defined as a unsuitable method because of high relative errors, 26.4 percent to 61.6 percent.

  • PDF

Effect of irrigation reservoir, antecedent soil moisture condition and Huff time distribution on peak discharge in a basin (농업용 저수지, 선행토양함수조건 및 Huff 시간 분포가 유역의 첨두홍수량에 미치는 영향 분석)

  • Kwon, Minsung;Ahn, Jae-Hyun;Jun, Kyung Soo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.417-424
    • /
    • 2018
  • This study analyzed the effect of irrigation reservoirs, antecedent soil moisture conditions (AMC) and Huff time distribution on peak discharge using Monte Carlo simulation. The peak discharge was estimated for four different cases in combination of irrigation reservoir capacity, AMC, and Huff time distribution. Applying 100% reservoir capacity or AMC-III, the peak discharges corresponding return periods of 50~300 years were overestimated by 25~30% compared to those of cases that considered the probability of occurrence for individual condition. Applying the 3rd quantile huff distribution, the peak discharges were overestimated by 5% over the peak discharge that considered the probability of occurrence. The overall results indicated that the effect on the peak flood of Huff distribution was less than AMC and reservoir storage.

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

Flood Analysis by Unsteady Flow on Tidal River Estuary (부정류에 의한 감조하천의 홍수분석)

  • 김현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.81-88
    • /
    • 1990
  • The flow in a river reach where is influenced by tidal motion is characterized by unsteady flow. The flood analysis in the river reach needs depending upon the theory based on the complete unsteady flow equations. In this study the unsteady flow model which is called CRIUM (Channel Routing by Implicit Unsteady Flow Model) was developed and was applied to the Mankyong and Dongjin river in order to analyze the flood characteristics. The results, which were calibrated and verified by the flood records to be measured in the two rivers, show that unsteady flow mode] can be used for the derivation of the flood hydrograph. The peak flood discharges were estimated as 4,960 and $2,870m^3$/sec in 100 year frequency at the estuary of the Mankyong and Dongjin river, respectively. In addition, it was analyzed that the river reaches were not influenced by tidal motion when the discharge magnitude was larger than approximately $3,000m^3$/sec.

  • PDF

Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method (최적화기법에 의한 관개저수지의 실시간 홍수예측모형)

  • 문종필;김태철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.85-93
    • /
    • 2001
  • The basic concept of the model is to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting) model. The flood forecasting model developed was applied to several strom event of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

Real-time Flood Forecasting Model for the Medium and Small Watershed Using Recursive Parameter Optimization (매개변수 추적에 의한 중.소하천의 실시간 홍수예측모형)

  • Moon, Jong-Pil;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.295-299
    • /
    • 2001
  • To protect the flooding damages in Medium and Small watershed, it needs to set up flood warning system and develope Flood forecasting Model in real-time basis for medium and small watershed. In this study, it was able to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance by using simplex method recursively for the determination of the best parameters of RETFLO model. The result of RETFLO performance applied to several storm of Yugu river during 3 past years was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF