• Title/Summary/Keyword: peak factor

Search Result 983, Processing Time 0.034 seconds

Analysis of the Affecting Factors to the Peak Factor in Water Supply Facilities (우리나라 상수도시설의 첨두부하 영향요소 분석)

  • Hyun, In-hwan;Lee, Che-in
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • This study is to analyze the affecting factors to the peak factor in the drinking water supply Facilities. The peak factor is a very important element to determine the capacity of the water supply facllities. Several factors such as Population served, average day water demand, ratio of domestic water use, ratio of affairs & business water use and water use per capital per day were selected as the affecting factors in this study. In this study, peak factor characteristics for Korean facilities were compared with those for Japanese ones. As a result, non-exceedance probability was suggested as the designing method for the peak factor. Also, the 50% non-exceedance probability values and the 90% values based on the 1998-1999 data were suggested in this study.

Improvement Method of Peak Load Forecasting for Mortor-use Distribution Transformer by Readjustment of Demand Factor (호당 수용률 조정을 통한 동력용 배전 변압기 최대부하 예측 개선 방안)

  • Park, Kyung-Ho;Kim, Jae-Chul;Lee, Hee-Tea;Yun, Sang-Yun;Park, Chang-Ho;Lee, Young-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.41-43
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers in winter, spring summer. And, the peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF

A revised Hermite peak factor model for non-Gaussian wind pressures on high-rise buildings and comparison of methods

  • Dongmei Huang;Hongling Xie;Qiusheng Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • To better estimate the non-Gaussian extreme wind pressures for high-rise buildings, a data-driven revised Hermitetype peak factor estimation model is proposed in this papar. Subsequently, a comparative study on three types of methods, such as Hermite-type models, short-time estimate Gumbel method (STE), and new translated-peak-process method (TPP) is carried out. The investigations show that the proposed Hermite-type peak factor has better accuracy and applicability than the other Hermite-type models, and its absolute accuracy is slightly inferior to the STE and new TPP methods for non-Gaussian wind pressures by comparing with the observed values. Moreover, these methods generally overestimate the Gaussian wind pressures especially the STE.

Peak-time Characteristics and Parking Apron Requirements of Korean Airports (국내공항의 항공기 운항 첨두 특성과 첨두시 주기장 소요에 관한 연구)

  • Yoo, Seung-Gwon;Lee, Yeong-Heok
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.6
    • /
    • pp.27-42
    • /
    • 2003
  • The basis for planning airport development is the specific demand at peak hour among various aviation demands. The demand at peak hour is regarded to be the source which enables us to estimate the size requirement and capacity of an airport facility. The distribution type of peak hour-operation depends on the difference of aircraft route, geographical location of airport, passengers and cargo. The demand at peak hour is calculated with peak hour factor. So far, the features of peak hour adopted for domestic airport construction plan have been based on the foreign research results. However, it is officially unconfirmed whether the various peak hour characteristics or peak hour factor suggested from foreign studies can be compatible with Korean state or not. In this study, the aircraft operation pattern and the peak hour characteristics are analyzed with hourly data using the operation schedule of an airport for the last 5 years and the actual result statistics of Korean air transportation by airport through the recent 10 Years. After the peak hour factor of the airports is calculated and compared with existing research results, peak hour factor by annual operation frequency is suggested for Korean airports.

Adjustment of Load Regression Coefficients and Demand-Factor for the Peak Load Estimation of Pole-Type Transformers (주상 변압기 최대부하 추정을 위한 부하상관계수 및 수용율 조정)

  • Yun, Sang-Yun;Kim, Jae-Chul;Park, Kyung-Ho;Moon, Jong-Fil;Lee, Jin;Park, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • This paper summarizes the research results of the load management for pole transformers done in 1997-1998 and 2000-2002. The purpose of the research is to enhance the accuracy of peak load estimation in pole transformers. We concentrated our effort on the acquisition of massive actual load data for modifying the load regression coefficients, which related to the peak load estimation of lamp-use customers, and adjusting the demand-factor coefficients, which used for the peak load prediction of motor-use customers. To enhance the load regression equations, the 264 load data acquisition devices are equipped to the sample pole transformers. For the modification of demand factor coefficients, the peak load currents are measured in each customer and pole transformer for 13 KEPCO (Korea Electric Power Corporation) distribution branch offices. Case studies for 50 sample pole transformers show that the proposed coefficients could reduce estimating error of the peak load for pole transformers, compared with the conventional one.

A Study on the Peak Load Prediction for Molter-use Distribution Transformer (동력용 배전 변압기의 최대부하 예측 개선 방안에 관한 연구)

  • Park, Kyung-Ho;Kim, Jae-Chul;Yun, Sang-Yun;Lee, Young-Suk;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.530-532
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF

Design Flow Velocity Changes According to the Design Flow Determination Methods in the Sanitary Sewer (오수관 설계유량 산정법이 설계유속에 미치는 영향)

  • Hyun, In-hwan;Won, Seung-hyun;Kim, Hyung-jun;Lee, Che-in
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.749-757
    • /
    • 2005
  • The present study analyzed actual cases of designed flow estimation method and designed flow rate of sewage pipe lines. In order to examine the effects of peak-hour demand factor estimation with given daily highest peak loading, we analyzed its effects on designed flow rate with changing the peak-hour demand factor from 2.0 to 10.0. The results of this study are as follows. When reviewing the recent designs, we found that 59.4% of pipe line with 250mm and 300mm diameter, which fall under minimum allowable pipeline did not meet the minimum velocity which is specified as 0.6m/sec in design standards. The pipe line that have minimal access population or have very low slope did not satisfy the minimum velocity. In estimating the designed sewage flow, the applied daily highest peak loading and hourly highest peaking loading were the load factor for the entire population of the planned area, and for the peak loading of the initial pipes connected to a very small population, we applied the same factor as that applied to the entire area and, as a result, the hourly highest flow was underestimated. Because, in case of the initial pipes, the method of applying the same peak loading to all subject areas is highly possible to produce underestimated design flow, when estimating the designed flow of the initial pipes connected to a small population need to adopt a rational flow factor according to the size of population. For this, it is considered to investigate and analyze raw data on daily and hourly variation of sewage flow.

Study of Peak Load Demand Estimation Methodology by Pearson Correlation Analysis with Macro-economic Indices and Power Generation Considering Power Supply Interruption

  • Song, Jiyoung;Lee, Jaegul;Kim, Taekyun;Yoon, Yongbeum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1427-1434
    • /
    • 2017
  • Since the late 2000s, there has been growing preparation in South Korea for a sudden reunification of South and North Korea. Particularly in the power industry field, thorough preparations for the construction of a power infrastructure after reunification are necessary. The first step is to estimate the peak load demand. In this paper, we suggest a new peak demand estimation methodology by integrating existing correlation analysis methods between economic indicators and power generation quantities with a power supply interruption model in consideration of power consumption patterns. Through this, the potential peak demand and actual peak demand of the Nation, which experiences power supply interruption can be estimated. For case studies on North Korea after reunification, the potential peak demand in 2015 was estimated at 5,189 MW, while the actual peak demand within the same year was recorded as 2,461 MW. The estimated potential peak demand can be utilized as an important factor when planning the construction of power system facilities in preparation for reunification.

A second order analytical solution of focused wave group interacting with a vertical wall

  • Sun, Yonggang;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.160-176
    • /
    • 2017
  • The interaction of focused wave groups with a vertical wall is investigated based on the second order potential theory. The NewWave theory, which represents the most probable surface elevation under a large crest, is adopted. The analytical solutions of the surface elevation, velocity potential and wave force exerted on the vertical wall are derived, up to the second order. Then, a parametric study is made on the interaction between nonlinear focused wave groups and a vertical wall by considering the effects of angles of incidence, wave steepness, focal positions, water depth, frequency bandwidth and the peak lifting factor. Results show that the wave force on the vertical wall for obliquely-incident wave groups is larger than that for normally-incident waves. The normalized peak crest of wave forces reduces with the increase of wave steepness. With the increase of the distance of focal positions from the vertical wall, the peak crest of surface elevation, although fluctuates, decreases gradually. Both the normalized peak crest and adjacent crest and trough of wave forces become larger for shallower water depth. For focused wave groups reflected by a vertical wall, the frequency bandwidth has little effects on the peak crest of wave elevation or forces, but the adjacent crest and trough become smaller for larger frequency bandwidth. There is no significant change of the peak crest and adjacent trough of surface elevation and wave forces for variation of the peak lifting factor. However, the adjacent crest increases with the increase of the peak lifting factor.

A case study of gust factor characteristics for typhoon Morakat observed by distributed sites

  • Liu, Zihang;Fang, Genshen;Zhao, Lin;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.21-34
    • /
    • 2022
  • Gust factor is an important parameter for the conversion between peak gust wind and mean wind speed used for the structural design and wind-related hazard mitigation. The gust factor of typhoon wind is observed to show a significant dispersion and some differences with large-scale weather systems, e.g., monsoons and extratropical cyclones. In this study, insitu measurement data captured by 13 meteorological towers during a strong typhoon Morakot are collected to investigate the statistical characteristics, height and wind speed dependency of the gust factor. Onshore off-sea and off-land winds are comparatively studied, respectively to characterize the underlying terrain effects on the gust factor. The theoretical method of peak factor based on Gaussian assumption is then introduced to compare the gust factor profiles observed in this study and given in some building codes and standards. The results show that the probability distributions of gust factor for both off-sea winds and off-land winds can be well described using the generalized extreme value (GEV) distribution model. Compared with the off-land winds, the off-sea gust factors are relatively smaller, and the probability distribution is more leptokurtic with longer tails. With the increase of height, especially for off-sea winds, the probability distributions of gust factor are more peaked and right-tailed. The scatters of gust factor decrease with the mean wind speed and height. AS/NZ's suggestions are nearly parallel with the measured gust factor profiles below 80m, while the fitting curve of off-sea data below 120m is more similar to AIJ, ASCE and EU.