• Title/Summary/Keyword: peak current

Search Result 1,752, Processing Time 0.034 seconds

A 10kW Hybrid Converter for the Electric Vehicle Charge Application (전기자동차 충전기용 10kW 하이브리드 컨버터)

  • Tran, Dai-Duong;Yu, Sun-Ho;Vu, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.319-320
    • /
    • 2015
  • A hybrid converter for the on-board charger consisting of a soft switching full bridge (SSFB) and a half bridge (HB) LLC resonant converter is proposed. The proposed topology adopts an additional switch and a diode at the secondary side of SSFB converter to guarantee the wide ZVS range of primary side switches and to eliminate the circulating current. The output voltage is regulated by controlling the duty cycle of secondary side switch. The effectiveness of the proposed converter was experimentally verified using a 10-kW prototype circuit. The experimental results show 96.8% peak efficiency.

  • PDF

Boost Converter for High Performance Operating of Fuel Cell System (연료전지 시스템의 고효율운전을 위한 6상 BOOST CONVERTER)

  • Park, S.S.;Yoon, H.J.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.867-869
    • /
    • 1993
  • In generally Boost Converter is used for Fuel Cell System. Because the output voltage of fuel cell is too small and greatly depends on the load condition, Boost Converter are required to boost and regulate the Fuel Cell voltage for per conversion efficiency. In this Paper, 6-phase Boost Converter is used to boost the Fuel Cell Voltage and regulate the output voltage. Multi phase converter hag some advantages such as low ripple and filter sine. About the Peak Current Control and compare of the Ripple Current of Boost Converter, we have studied.

  • PDF

A Study on the Circuit Parameter for the Optimum Waveform of Defibrillator (제세동기의 최적파형 발생을 위한 회로 파라미터에 관한 연구)

  • Kim, Taek-Soo;Park, Sang-Hui;Go, Han-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.92-94
    • /
    • 1994
  • In designing defibrillator several points must be considered such as patient's transthoracic impedance, output energy level, peak current, tine duration of current waveform. Patient's transthoracic impedance depends on patient respectively and the health condition of patient. In this study, before the hardware implementation of defibrillator we determine the range of parameter values of circuit elements to derive optimal discharge waveform by predicting and analyzing the performance of designed circuit.

  • PDF

The study on the thermal stability with the changing current density of the electrodeposited Ni-P-Fe was formed inside Alloy600 tube (Alloy600 튜브 내면에 형성된 Ni-P-Fe 전기도금층의 전류밀도 변화와 열적안정성 대한 연구)

  • Kim, Myeong-Jin;Kim, Dong-Jin;Kim, Jeong-Su;Kim, Hong-Pyo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.153-154
    • /
    • 2009
  • 원자력발전소 증기발생기 전열관 보수 기술의 하나로 니켈 합금 전기 도금이 연구되고 있다. 여러 도금 공정변수 중 peak current density를 달리하여 Ni-P-Fe 전기도금층을 제조한 뒤, 열처리 온도 $325^{\circ}C$에서 10, 30일간 열처리를 한 후, 인장강도와 연신율을 측정하고, 그 파단면을 관찰하였다. 50mA/$cm^2$로 제조된 도금층은 100mA/$cm^2$로 제조된 도금층에 비해 우수한 열적안정성을 가짐을 알 수 있었다.

  • PDF

Phase-Shift Triple Full-Bridge ZVZCS Converter with All Soft Switched Devices

  • Zhu, Junjie;Qian, Qinsong;Lu, Shengli;Sun, Weifeng
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1337-1350
    • /
    • 2019
  • This paper proposes a Phase-Shift Triple Full-Bridge (PSTB) Zero-Voltage Zero-Current-Switching (ZVZCS) converter with a high switching frequency and high efficiency. In the proposed converter, all three bridge legs are shared leading-legs, and all three transformers work in the Discontinuous Conduction Mode (DCM). Thus, all of the switches and diodes in the PSTB ZVZCS can be soft switched. Moreover, since all of the transformers can pass energy from the primary-side to the secondary-side when their primary-side currents are not zero, there is no circulating current. As a result, the PSTB ZVZCS converter can achieve a high efficiency at high operating frequencies. A theoretical analysis and the characteristics of the proposed converter are presented and verified on a 1MHz 200~300V/24V 1.2kW hardware prototype. The proposed converter can reach a peak efficiency of 96.6%.

Five years of the CiPA project (2013-2018) - what did we learn?

  • Yim, Dong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.145-149
    • /
    • 2018
  • Cases of drug-induced QT prolongation and sudden cardiac deaths resulted in market withdrawal of many drugs and world-wide regulatory changes through accepting the ICH guidelines E14 and S7B. However, because the guidelines were not comprehensive enough to cover the electrophysiological changes by drug-induced cardiac ion channel blocking, CiPA was initiated by experts in governments and academia in the USA, Europe, and Japan in 2013. Five years have passed since the launch of the CiPA initiative that aimed to improve the current ICH guidelines. This report reviews the current achievements of the CiPA initiative and explores unresolved issues.

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C.;Meti, Manjunath D.;Nandibewoor, Sharanappa T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.292-300
    • /
    • 2018
  • The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.

Electrocatalytic Reduction of Thionyl Chloride by Schiff Base Metal(II) Complexes (1)

  • Sin, Mi Suk;Kim, U Seong;Jo, Gi Hyeong;Choe, Yong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.205-210
    • /
    • 1995
  • Catalytic effects of various Schiff base metal(II) complexes on the reduction of thionyl chloride at glassy carbon electrode are evaluated by determining the kinetic parameters from cyclic voltammetry technique. The charge transfer process is affected strongly by the concentration of catalysts during the reduction of thionyl chloride. The catalytic effects are shown by both a shift of the reduction potential for thionyl chloride toward more positive direction and an increase in peak current. The diffusion coefficient value, Do, of the 8.17 ${\times}$ 10-9 $cm^2/s$ was observed at the bare glassy carbon electrode, whereas larger values (0.9-1.09 ${\times}$ 10-8 $cm^2/s$) were observed at the catalyst supported glassy carbon electrode. Significant improvements in the cell performance have been noted in terms of both exchange rate constants and current densities at glassy carbon electrode.

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V.;Choi, Jong-Hyeok;Park, Hyun-Chang;Kim, Hyun-Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1399-1402
    • /
    • 2018
  • Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

Mass Transport Properties and Influence of Natural Convection for Voltammetry at the Agarose Hydrogel Interface

  • Kim, Byung-Kwon;Park, Kyungsoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.347-353
    • /
    • 2022
  • Agarose hydrogel, a solid electrolyte, was investigated voltammetrically in terms of transport properties and natural convection effects using a ferrocenyl compound as a redox probe. To confirm the diffusion properties of solute on the agarose interface, the diffusion coefficients (D) of ferrocenemethanol in agarose hydrogel were determined by cyclic voltammetry (CV) according to the concentration of agarose hydrogel. While the value of D on the agarose interface is smaller than that in the bulk solution, the square root of the scan rate-dependent peak current reveals that the mass transport behavior of the solute on the agarose surface shows negligible convection or migration effects. In order to confirm the reduced natural convection on the gel interface, scan rate-dependent CV was performed in the solution phase and on the agarose surface, respectively. Slow scan voltammetry at the gel interface can determine a conventional and reproducible diffusion-controlled current down to a scan rate of 0.3 mV/s without any complicated equipment.