• Title/Summary/Keyword: pattern matching H/W

Search Result 5, Processing Time 0.022 seconds

Finding approximate occurrence of a pattern that contains gaps by the bit-vector approach

  • Lee, In-Bok;Park, Kun-Soo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.193-199
    • /
    • 2003
  • The application of finding occurrences of a pattern that contains gaps includes information retrieval, data mining, and computational biology. As the biological sequences may contain errors, it is important to find not only the exact occurrences of a pattern but also approximate ones. In this paper we present an O(mnk$_{max}$/w) time algorithm for the approximate gapped pattern matching problem, where m is the length of the text, H is the length of the pattern, w is the word size of the target machine, and k$_{max}$ is the greatest error bound for subpatterns.

  • PDF

The Decomposition of EMG signals using Template Matiching Method in the frequency domain (주파수 템플릿 정합법을 사용한 EMG 신호 분해)

  • Park, S.H.;Lee, Y.W.;Go, H.W.;Ye, S.Y.;Eom, S.H.;Nam, K.G.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.55-58
    • /
    • 1997
  • In this paper, we study a signal processing method which extracts each MUAP(motor unit action potential) from EMG(Electromyogram) interference pattern or clinical diagnostic purposes. First of all, differential digital filtering is selected or eliminating the spike components of the MUAP's from the background noise. And, the algorithm identifies the spikes over the certanin threshold by template matching in frequency domain. After missing or false firing actor is cut off at the IPI(inter pulse interval) histogram, we averages the MUAP waveforms from the raw signal using the identified spikes as triggers, and Finally, measures their amplitudes, durations, and numbers of phases. Specially, We introduce algorithm performed by template matching in the frequency domain. A typical 3-s signal recorded from the biceps brachii muscle using a conventional needle electrode during a isometric contraction is used. Finally, the method decomposed five simultaneous active MUAP's from original EMG signal.

  • PDF

A Hardware Architecture of Regular Expression Pattern Matching for Deep Packet Inspection (심층 패킷검사를 위한 정규표현식 패턴매칭 하드웨어 구조)

  • Yun, Sang-Kyun;Lee, Kyu-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.13-22
    • /
    • 2011
  • Network Intrusion Detection Systems use regular expression to represent malicious packets and hardware-based pattern matching is required for fast deep packet inspection. Although hardware architectures for implementing constraint repetition operators such as {10} were recently proposed, they have some limitation. In this paper, we propose hardware architecture supporting constraint repetitions of general regular expression sub-patterns with lower logic complexity. The subpatterns supported by the proposed contraint repetition architecture include general regular expression patterns as well as a single character and fixed length patterns. With the proposed building block, we can implement more efficiently regular expression pattern matching hardwares.

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.

A Fault Diagnosis Using System Matrix In Expert System (System matrix를 사용한 고장진단 전문가 시스템)

  • Sim, K.J.;Kim, K.J.;Ha, W.K.;Chu, J.B.;Oh, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.233-236
    • /
    • 1989
  • This paper deals with the expert system using network configuration and input information composed of protective relays and tripped circuit breakers. This system has knowlegebase independent on network dimension because network representation consists of the type of the matrix. Therefore, the knowlege of network representation is simplified, the space of knowlege is reduced, the addition of facts to the knowlege is easy and the expansion of facts is possible. In this paper, the network representation is defined to system matrix. This expert system based on the system matrix diagnoses normal, abnormal operations of protective devices as well as possible fault sections. The brach and bound search technique is used: breadth first technique mixed with depth first technique of primitive PROLOG search technique. This system will be used for real time operations. This expert system obtaines the solution using the pattern matching in working memory without no listing approach for rule control. This paper is written in PROLOG, the A.I. language.

  • PDF