This paper proposes an algorithm for precise detection of corner points on a coplanar checkerboard in order to perform stereo camera calibration using a single frame. Considering the conditions of automobile production lines where a stereo camera is attached to the windshield of a vehicle, this research focuses on a coplanar calibration methodology. To obtain the accurate values of the stereo camera parameters using the calibration methodology, precise localization of a large number of feature points on a calibration target image should be ensured. To realize this demand, the idea with respect to a checkerboard pattern design and the use of a Homography matrix are provided. The calibration result obtained by the proposed method is also verified by comparing the depth information from stereo matching and a laser scanner.
지식기반 영상검색은 영상이 갖는 다양한 데이터에서 추출되어진 특징값을 지식으로 하여 질의 영상에 대한 검색 결과영상을 찾아주는 방법이다. 본 연구에서 사용한 영상자료는 자동차 전조등 영상으로 전조등 영상에 대한 입력 자료는 차량마다 다양한 패턴을 갖는 영상과 문자, 숫자 및 특수문자이다. 영상에서의 정보는 화소값들의 분포상태나 통계적 분석 및 패턴의 상태 등인데, 전조등 영상에서는 이러한 정보가 영상 검색을 위한 지식 데이터로 사용된다. 영상데이터에서 추출된 다양한 정보를 다중 지식 기반으로 하여 본 논문에서는 교통사고나 기타 차량사건의 발생 시 활용할 수 있는 영상검색 시스템을 구축하였으며, 전조등 영상의 검색에 효율적으로 적용한 다중 지식기반 검색방법을 제안하였다. 다중지식 구축을 위한 특징함수는 컬러 영상에서와 그레이레벨 영상에서 각각 필요한 성분들을 추출하여 구성하였으며, 한 개나 두 개 정도의 특징값을 사용한 기존의 방법과 달리 복합적인 특징값의 사용을 통한 다중 지식 기반의 검색방법이 컬러정보나 패턴에 대한 유사성을 높여서 용의차량의 전조등 영상 검색 효율성을 향상시켰다. 소프트웨어의 제작을 위해 비쥬얼 베이직과 크리스탈리포트 그리고 MS 액세스 데이터베이스를 사용하였다. 검색 효율성 및 특성 함수의 구성을 효과적으로 발전시키면 검색시스템은 용의 차량의 추적 및 교통사고에서 효율적인 과학수사에 일조할 것으로 기대한다.
이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.
침입 탐지시스템 (Intrusion Detection System: IDS)은 기존의 수동적인 탐지 기능에서 벗어나, 보다 다양한 형태와 방법론으로 연구되고 있다. 특히, 최근에는 대용량의 시스템 감사 데이터를 빠르게 처리하고 변형된 형태의 공격에 대비한 수 있는 내구력을 가진 형태의 방법론들이 요구되고 있으며, 이러한 조건을 만족하는 데이터마이닝이나 신경망을 이용한 침입 탐지 시스템에 대한 연구가 활발해 지고 있다. 본 논문에서는 우선. 최근의 다양한 형태의 침입경향들을 분석하고, 보다 효과적인 침입탐지를 위한 방안으로 신경망 기반의 역전파 알고리즘을 이용한 침입 탐지 시스템을 설계$.$구현 하였다. 본 연구의 시스템은 비정상행위 탐지(Anomoly Defection)와 오용탐지 (Misuse Detection)의 두 가지 방법론을 모두 수용하는 방법론을 사용하였으며, 신뢰성있는 KDD Cup ‘99의 데이터를 통한 침입패턴의 분석 및 실험을 수행 하였다. 또한 객체지향적인 네트워크 설계를 통하여 역전파 알고리즘 이외의 다른 알고리즘도 쉽게 적용이 가능하도록 하였다.
최근 3차원 공간정보에 대한 수요가 증가함에 따라 신속하고 정확한 데이터 구축의 중요성이 증대되어 왔다. 정밀한 3차원 데이터 구축이 가능한 LiDAR (Light Detection and Ranging) 데이터를 기준으로 UAV (Unmanned Aerial Vehicle) 영상을 정합하기 위한 연구가 다수 수행되어 왔으나, MMS (Mobile Mapping System)로부터 취득된 LiDAR 점군데이터의 반사강도 영상을 활용한 연구는 미흡한 실정이다. 따라서 본 연구에서는 MMS로부터 취득된 LiDAR 점군데이터를 반사영상으로 변환한 데이터와 UAV 영상 데이터의 정합을 위해 9가지의 특징점 기반매칭 기법을 비교·분석하였다. 분석 결과 SIFT (Scale Invariant Feature Transform) 기법을 적용하였을 때 안정적으로 높은 매칭 정확도를 확보할 수 있었으며, 다양한 도로 환경에서도 충분한 정합점을 추출할 수 있었다. 정합 정확도 분석 결과 SIFT 알고리즘을 적용한 경우 중복도가 낮으며 동일한 패턴이 반복되는 경우를 제외하고는 약 10픽셀 수준으로 정확도를 확보할 수 있었으며, UAV 영상 촬영 당시 UAV 자세에 따른 왜곡이 포함되어 있음을 감안할 때 합리적인 결과라고 할 수 있다. 따라서 본 연구의 분석 결과는 향후 LiDAR 점군데이터와 UAV 영상의 3차원 정합을 위한 기초연구로 활용될 수 있을 것으로 기대된다.
본 논문에서는 구개열 환자의 장애 발음과 정상인의 발음을 자동으로 구분하여 판별하는데 사용될 수 있는 특징 추출 방법들의 성능을 분석하는 실험에 대하여 소개한다. 이 연구는 발성 장애인의 복지 향상을 추구하며 수행하고 있는 장애 음성 자동 인식 및 복원 소프트웨어 시스템 개발의 기초과정이다. 실험에 사용된 음성 데이터는 정상인의 발음, 구개열 환자의 발음, 그리고 모의 환자의 발음의 세 그룹으로부터 수집된 한국어 단음절로서 14개의 기본 자음과 5개의 복합 자음, 7개 모음이다. 발음의 특징 추출은 LPCC, MFCC, PLP의 세 가지 방법으로 각각 수행하였고, GMM 음향 모델로 인식 훈련을 한 후, 수집된 단음절 데이터를 대상으로 하여 인식 실험을 실시하였다. 실험 결과, 정상인과 구개열 환자의 장애 발음을 구별하기 위하여 특징을 추출함에 있어서 MFCC 방법이 전반적으로 가장 우수하였다. 본 연구의 결과는 구개열 환자의 부정확한 발음을 자동으로 인식하고 복원하는 연구와 구개열 장애 발음의 정도를 측정할 수 있는 도구에 대한 연구에 도움이 될 것으로 기대된다.
목표물 탐지 및 인식은 신경망의 적용이 활발한 하나의 분야로서, 일반적인 형태인식 문제들의 요구 사항에 추가적으로 translation invariance와 실시간 처리를 요구한다. 본 논문에서는 이러한 요구 사항을 만족하는 새로운 신경망의 구조를 소개하고, 이의 효과적인 학습 방법을 설명한다. 제안된 신경망은 특징 추출 단계와 형태 인식 단계가 연속(Cascade)된 가중치 공유 신경망(Shared-weight Neural Network)을 기본으로하여 이를 확장한 형태이다. 이 신경망의 특징 추출 단계는 입력에 가중치 창(weight kernel)으로 코릴레이션 형태의 연산을 수행하며, 신경망 전체를 하나의 2차원 비선형 코릴레이션 필터로 볼 수 있다. 따라서, 신경망의 최종 출력은 목표물 위치에 첨예(peak)값을 갖는 코릴레이션 평면이다. 이 신경망이 갖는 구조는 병렬 또는 분산 처리 컴퓨터로의 구현에 매우 적합하며, 이러한 사실은 실시간 처리가 중요한 요인이 되는 문제에 적용할 수 있음을 의미한다. 목표물과 비목표물간의 숫자상 불균형으로 인하여 초래되는 오경보(false alarm) 발생의 문제를 극복하기 위한 새로운 학습 방법도 소개한다. 성능 검증을 위하여 제안된 신경망을 주차장내에서 이동하는 특정 차량의 탐지 및 인식 문제에 적용하였다. 그 결과 오경보 발생이 없었으며, 중형급 컴퓨터를 이용하여 약 190Km로 이동하는 차량의 추적이 가능한 정도의 빠른 처리 결과를 보여 주었다.
The environmental control based on interactive thermoregulatory behavior for swine production has many advantages over the conventional temperature-based control methods. Therefore, this study was conducted to compare various feature selection methods using postural images of growing pigs under various environmental conditions. A color CCD camera was used to capture the behavioral images which were then modified to binary images. The binary images were processed by thresholding, edge detection, and thinning techniques to separate the pigs from their background. Following feature were used for the input patterns to the neural network ; \circled1 perimeter, \circled2 area, \circled3 Fourier coefficients (5$\times$5), \circled4 combination of (\circled1 + \circled2), \circled5 combination of (\circled1 + \circled3), \circled6 combination of (\circled2 + \circled3), and \circled7 combination of (\circled1 + \circled2 + \circled3). Using the above each input pattern, the neural network could classify training images with the success rates of 96%, 96%, 96%, 100%, 100%, 96%, 100%, and testing images with those of 88%, 86%, 93%, 96%, 91%, 90%, 98%, respectively. Thus, the combination of perimeter, area and Fourier coefficients of the thinning images as neural network features gave the best performance (98%) in the behavioral classification.
In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.
부정맥 분류를 위한 기존 연구들은 개인별 ECG신호의 차이는 고려하지 않고 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 또한 기존의 방법들은 각 ECG 특징점의 정확한 측정을 필요로 하며, 연산이 매우 복잡하다. 복잡도를 줄이기 위한 여러 가지 방법들이 제안되었지만, 그에 따른 분류의 정확도가 떨어지는 문제점이 있었다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 다양한 ECG 신호의 패턴에 따라 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고 부정맥을 정확하게 분류 할 수 있는 방법이 필요하다. 본 연구에서는 대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 QRS 특징점을 통해 대상 유형별 ECG 신호의 QRS 패턴을 정의하였다. 이후 패턴분류에 따른 오류를 검출 및 수정하고, 중복된 QRS 패턴을 별도의 부정맥으로 분류하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 43개의 레코드를 대상으로 PVC, PAC, Normal, LBBB, RBBB, Paced beat의 검출율을 비교하였다. 실험결과 Normal, PVC, PAC, LBBB, RBBB, Paced beat의 검출율은 각각 99.98, 97.22 95.14, 91.47, 94.85, 97.48%의 우수한 검출율을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.