• 제목/요약/키워드: pattern feature detection

검색결과 191건 처리시간 0.02초

스테레오 카메라 캘리브레이션을 위한 동일평면 체커보드 코너점 정밀검출 (Precise Detection of Coplanar Checkerboard Corner Points for Stereo Camera Calibration Using a Single Frame)

  • 박정민;이종인;조준범;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.602-608
    • /
    • 2015
  • This paper proposes an algorithm for precise detection of corner points on a coplanar checkerboard in order to perform stereo camera calibration using a single frame. Considering the conditions of automobile production lines where a stereo camera is attached to the windshield of a vehicle, this research focuses on a coplanar calibration methodology. To obtain the accurate values of the stereo camera parameters using the calibration methodology, precise localization of a large number of feature points on a calibration target image should be ensured. To realize this demand, the idea with respect to a checkerboard pattern design and the use of a Homography matrix are provided. The calibration result obtained by the proposed method is also verified by comparing the depth information from stereo matching and a laser scanner.

자동차 전조등 검색을 위한 다중지식기반의 영상검색 기법 (The Multi Knowledge-based Image Retrieval Technology for An Automobile Head Lamp Retrieval)

  • 이병일;손병환;홍성욱;손성건;최흥국
    • 융합신호처리학회논문지
    • /
    • 제3권3호
    • /
    • pp.27-35
    • /
    • 2002
  • 지식기반 영상검색은 영상이 갖는 다양한 데이터에서 추출되어진 특징값을 지식으로 하여 질의 영상에 대한 검색 결과영상을 찾아주는 방법이다. 본 연구에서 사용한 영상자료는 자동차 전조등 영상으로 전조등 영상에 대한 입력 자료는 차량마다 다양한 패턴을 갖는 영상과 문자, 숫자 및 특수문자이다. 영상에서의 정보는 화소값들의 분포상태나 통계적 분석 및 패턴의 상태 등인데, 전조등 영상에서는 이러한 정보가 영상 검색을 위한 지식 데이터로 사용된다. 영상데이터에서 추출된 다양한 정보를 다중 지식 기반으로 하여 본 논문에서는 교통사고나 기타 차량사건의 발생 시 활용할 수 있는 영상검색 시스템을 구축하였으며, 전조등 영상의 검색에 효율적으로 적용한 다중 지식기반 검색방법을 제안하였다. 다중지식 구축을 위한 특징함수는 컬러 영상에서와 그레이레벨 영상에서 각각 필요한 성분들을 추출하여 구성하였으며, 한 개나 두 개 정도의 특징값을 사용한 기존의 방법과 달리 복합적인 특징값의 사용을 통한 다중 지식 기반의 검색방법이 컬러정보나 패턴에 대한 유사성을 높여서 용의차량의 전조등 영상 검색 효율성을 향상시켰다. 소프트웨어의 제작을 위해 비쥬얼 베이직과 크리스탈리포트 그리고 MS 액세스 데이터베이스를 사용하였다. 검색 효율성 및 특성 함수의 구성을 효과적으로 발전시키면 검색시스템은 용의 차량의 추적 및 교통사고에서 효율적인 과학수사에 일조할 것으로 기대한다.

  • PDF

웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단 (Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets)

  • ;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.726-735
    • /
    • 2009
  • 이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.

역전파 알고리즘 기반의 침입 패턴 분석 (An Analysis of Intrusion Pattern Based on Backpropagation Algorithm)

  • 우종우;김상영
    • 인터넷정보학회논문지
    • /
    • 제5권5호
    • /
    • pp.93-103
    • /
    • 2004
  • 침입 탐지시스템 (Intrusion Detection System: IDS)은 기존의 수동적인 탐지 기능에서 벗어나, 보다 다양한 형태와 방법론으로 연구되고 있다. 특히, 최근에는 대용량의 시스템 감사 데이터를 빠르게 처리하고 변형된 형태의 공격에 대비한 수 있는 내구력을 가진 형태의 방법론들이 요구되고 있으며, 이러한 조건을 만족하는 데이터마이닝이나 신경망을 이용한 침입 탐지 시스템에 대한 연구가 활발해 지고 있다. 본 논문에서는 우선. 최근의 다양한 형태의 침입경향들을 분석하고, 보다 효과적인 침입탐지를 위한 방안으로 신경망 기반의 역전파 알고리즘을 이용한 침입 탐지 시스템을 설계$.$구현 하였다. 본 연구의 시스템은 비정상행위 탐지(Anomoly Defection)와 오용탐지 (Misuse Detection)의 두 가지 방법론을 모두 수용하는 방법론을 사용하였으며, 신뢰성있는 KDD Cup ‘99의 데이터를 통한 침입패턴의 분석 및 실험을 수행 하였다. 또한 객체지향적인 네트워크 설계를 통하여 역전파 알고리즘 이외의 다른 알고리즘도 쉽게 적용이 가능하도록 하였다.

  • PDF

MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구 (Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV)

  • 최윤조;;홍승환;손홍규
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.453-464
    • /
    • 2019
  • 최근 3차원 공간정보에 대한 수요가 증가함에 따라 신속하고 정확한 데이터 구축의 중요성이 증대되어 왔다. 정밀한 3차원 데이터 구축이 가능한 LiDAR (Light Detection and Ranging) 데이터를 기준으로 UAV (Unmanned Aerial Vehicle) 영상을 정합하기 위한 연구가 다수 수행되어 왔으나, MMS (Mobile Mapping System)로부터 취득된 LiDAR 점군데이터의 반사강도 영상을 활용한 연구는 미흡한 실정이다. 따라서 본 연구에서는 MMS로부터 취득된 LiDAR 점군데이터를 반사영상으로 변환한 데이터와 UAV 영상 데이터의 정합을 위해 9가지의 특징점 기반매칭 기법을 비교·분석하였다. 분석 결과 SIFT (Scale Invariant Feature Transform) 기법을 적용하였을 때 안정적으로 높은 매칭 정확도를 확보할 수 있었으며, 다양한 도로 환경에서도 충분한 정합점을 추출할 수 있었다. 정합 정확도 분석 결과 SIFT 알고리즘을 적용한 경우 중복도가 낮으며 동일한 패턴이 반복되는 경우를 제외하고는 약 10픽셀 수준으로 정확도를 확보할 수 있었으며, UAV 영상 촬영 당시 UAV 자세에 따른 왜곡이 포함되어 있음을 감안할 때 합리적인 결과라고 할 수 있다. 따라서 본 연구의 분석 결과는 향후 LiDAR 점군데이터와 UAV 영상의 3차원 정합을 위한 기초연구로 활용될 수 있을 것으로 기대된다.

구개열 환자 발음 판별을 위한 특징 추출 방법 분석 (Analysis of Feature Extraction Methods for Distinguishing the Speech of Cleft Palate Patients)

  • 김성민;김우일;권택균;성명훈;성미영
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1372-1379
    • /
    • 2015
  • 본 논문에서는 구개열 환자의 장애 발음과 정상인의 발음을 자동으로 구분하여 판별하는데 사용될 수 있는 특징 추출 방법들의 성능을 분석하는 실험에 대하여 소개한다. 이 연구는 발성 장애인의 복지 향상을 추구하며 수행하고 있는 장애 음성 자동 인식 및 복원 소프트웨어 시스템 개발의 기초과정이다. 실험에 사용된 음성 데이터는 정상인의 발음, 구개열 환자의 발음, 그리고 모의 환자의 발음의 세 그룹으로부터 수집된 한국어 단음절로서 14개의 기본 자음과 5개의 복합 자음, 7개 모음이다. 발음의 특징 추출은 LPCC, MFCC, PLP의 세 가지 방법으로 각각 수행하였고, GMM 음향 모델로 인식 훈련을 한 후, 수집된 단음절 데이터를 대상으로 하여 인식 실험을 실시하였다. 실험 결과, 정상인과 구개열 환자의 장애 발음을 구별하기 위하여 특징을 추출함에 있어서 MFCC 방법이 전반적으로 가장 우수하였다. 본 연구의 결과는 구개열 환자의 부정확한 발음을 자동으로 인식하고 복원하는 연구와 구개열 장애 발음의 정도를 측정할 수 있는 도구에 대한 연구에 도움이 될 것으로 기대된다.

목표물의 고속 탐지 및 인식을 위한 효율적인 신경망 구조 (Effcient Neural Network Architecture for Fat Target Detection and Recognition)

  • 원용관;백용창;이정수
    • 한국정보처리학회논문지
    • /
    • 제4권10호
    • /
    • pp.2461-2469
    • /
    • 1997
  • 목표물 탐지 및 인식은 신경망의 적용이 활발한 하나의 분야로서, 일반적인 형태인식 문제들의 요구 사항에 추가적으로 translation invariance와 실시간 처리를 요구한다. 본 논문에서는 이러한 요구 사항을 만족하는 새로운 신경망의 구조를 소개하고, 이의 효과적인 학습 방법을 설명한다. 제안된 신경망은 특징 추출 단계와 형태 인식 단계가 연속(Cascade)된 가중치 공유 신경망(Shared-weight Neural Network)을 기본으로하여 이를 확장한 형태이다. 이 신경망의 특징 추출 단계는 입력에 가중치 창(weight kernel)으로 코릴레이션 형태의 연산을 수행하며, 신경망 전체를 하나의 2차원 비선형 코릴레이션 필터로 볼 수 있다. 따라서, 신경망의 최종 출력은 목표물 위치에 첨예(peak)값을 갖는 코릴레이션 평면이다. 이 신경망이 갖는 구조는 병렬 또는 분산 처리 컴퓨터로의 구현에 매우 적합하며, 이러한 사실은 실시간 처리가 중요한 요인이 되는 문제에 적용할 수 있음을 의미한다. 목표물과 비목표물간의 숫자상 불균형으로 인하여 초래되는 오경보(false alarm) 발생의 문제를 극복하기 위한 새로운 학습 방법도 소개한다. 성능 검증을 위하여 제안된 신경망을 주차장내에서 이동하는 특정 차량의 탐지 및 인식 문제에 적용하였다. 그 결과 오경보 발생이 없었으며, 중형급 컴퓨터를 이용하여 약 190Km로 이동하는 차량의 추적이 가능한 정도의 빠른 처리 결과를 보여 주었다.

  • PDF

영상처리와 인공신경망을 이용한 돼지의 체온조절행동 분류 시스템 개발 (Development of Classification System for Thermal Comfort Behavior of Pigs by Image Processing and Neural Network)

  • 장동일;임영일;장홍희
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.431-438
    • /
    • 1999
  • The environmental control based on interactive thermoregulatory behavior for swine production has many advantages over the conventional temperature-based control methods. Therefore, this study was conducted to compare various feature selection methods using postural images of growing pigs under various environmental conditions. A color CCD camera was used to capture the behavioral images which were then modified to binary images. The binary images were processed by thresholding, edge detection, and thinning techniques to separate the pigs from their background. Following feature were used for the input patterns to the neural network ; \circled1 perimeter, \circled2 area, \circled3 Fourier coefficients (5$\times$5), \circled4 combination of (\circled1 + \circled2), \circled5 combination of (\circled1 + \circled3), \circled6 combination of (\circled2 + \circled3), and \circled7 combination of (\circled1 + \circled2 + \circled3). Using the above each input pattern, the neural network could classify training images with the success rates of 96%, 96%, 96%, 100%, 100%, 96%, 100%, and testing images with those of 88%, 86%, 93%, 96%, 91%, 90%, 98%, respectively. Thus, the combination of perimeter, area and Fourier coefficients of the thinning images as neural network features gave the best performance (98%) in the behavioral classification.

  • PDF

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 (Arrhythmia Classification Method using QRS Pattern of ECG Signal according to Personalized Type)

  • 조익성;정종혁;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1728-1736
    • /
    • 2015
  • 부정맥 분류를 위한 기존 연구들은 개인별 ECG신호의 차이는 고려하지 않고 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 또한 기존의 방법들은 각 ECG 특징점의 정확한 측정을 필요로 하며, 연산이 매우 복잡하다. 복잡도를 줄이기 위한 여러 가지 방법들이 제안되었지만, 그에 따른 분류의 정확도가 떨어지는 문제점이 있었다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 다양한 ECG 신호의 패턴에 따라 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고 부정맥을 정확하게 분류 할 수 있는 방법이 필요하다. 본 연구에서는 대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 QRS 특징점을 통해 대상 유형별 ECG 신호의 QRS 패턴을 정의하였다. 이후 패턴분류에 따른 오류를 검출 및 수정하고, 중복된 QRS 패턴을 별도의 부정맥으로 분류하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 43개의 레코드를 대상으로 PVC, PAC, Normal, LBBB, RBBB, Paced beat의 검출율을 비교하였다. 실험결과 Normal, PVC, PAC, LBBB, RBBB, Paced beat의 검출율은 각각 99.98, 97.22 95.14, 91.47, 94.85, 97.48%의 우수한 검출율을 나타내었다.