• Title/Summary/Keyword: pattern clustering

Search Result 545, Processing Time 0.03 seconds

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.97-108
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because of clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy. It reduces running time by using grid-based sample. And other clustering applications can be more effective by using this methods with its original methods.

  • PDF

K-means Clustering using a Center Of Gravity for grid-based sample

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.51-60
    • /
    • 2004
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Course Variance Clustering for Traffic Route Waypoint Extraction

  • Onyango Shem Otoi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.277-279
    • /
    • 2022
  • Rapid Development and adoption of AIS as a survailance tool has resulted in widespread application of data analysis technology, in addition to AIS ship trajectory clustering. AIS data-based clustering has become an increasingly popular method for marine traffic pattern recognition, ship route prediction and anomaly detection in recent year. In this paper we propose a route waypoint extraction by clustering ships CoG variance trajectory using Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm in both port approach channel and coastal waters. The algorithm discovers route waypoint effectively. The result of the study could be used in traffic route extraction, and more-so develop a maritime anomaly detection tool.

  • PDF

The Pattern Segmentation of 3D Image Information Using FCM (FCM을 이용한 3차원 영상 정보의 패턴 분할)

  • Kim Eun-Seok;Joo Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.871-876
    • /
    • 2006
  • In this thesis, to accurately measure 3D face information using the spatial encoding patterns, the new algorithm to segment the pattern images from initial face pattern image is proposed. If the obtained images is non-homogeneous texture and ambiguous boundary pattern, the pattern segmentation is very difficult. Furthermore. the non-encoded areas by accumulated error are occurred. In this thesis, the FCM(fuzzy c-means) clustering method is proposed to enhance the robust encoding and segmentation rate under non-homogeneous texture and ambiguous boundary pattern. The initial parameters for experiment such as clustering class number, maximum repetition number, and error tolerance are set with 2, 100, 0.0001 respectively. The proposed pattern segmentation method increased 8-20% segmentation rate with conventional binary segmentation methods.

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

An Adaptive Reclosing Scheme Based on the Classification of Fault Patterns in Power distribution System (사고 패턴 분류에 기초한 배전계통의 적응 재폐로방식)

  • Oh, Jung-Hwan;Kim, Jae-Chul;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.112-119
    • /
    • 2001
  • This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.

  • PDF

Kernel Pattern Recognition using K-means Clustering Method (K-평균 군집방법을 이요한 가중커널분류기)

  • 백장선;심정욱
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.447-455
    • /
    • 2000
  • We propose a weighted kernel pattern recognition method using the K -means clustering algorithm to reduce computation and storage required for the full kernel classifier. This technique finds a set of reference vectors and weights which are used to approximate the kernel classifier. Since the hierarchical clustering method implemented in the 'Weighted Parzen Window (WP\V) classifier is not able to rearrange the proper clusters, we adopt the K -means algorithm to find reference vectors and weights from the more properly rearranged clusters \Ve find that the proposed method outperforms the \VP\V method for the repre~entativeness of the reference vectors and the data reduction.

  • PDF

The Auto Regressive Parameter Estimation and Pattern Classification of EKS Signals for Automatic Diagnosis (심전도 신호의 자동분석을 위한 자기회귀모델 변수추정과 패턴분류)

  • 이윤선;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1988
  • The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.

  • PDF

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.

K-means Clustering using a Grid-based Sampling

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF