• Title/Summary/Keyword: pathology

Search Result 18,748, Processing Time 0.051 seconds

Disease Control Efficacy of the Extract of Magnolia officinalis against Perilla and Zoysiagrass Rusts (후박 추출물의 들깨 녹병과 잔디 녹병에 대한 방제 효과)

  • Yoon, Mi-Young;Choi, Yong Ho;Kang, Mun Seong;Lee, Jae Hong;Han, Seong Sook;Myoung, In Sik;Han, Byoung Soo;Choi, Gyung Ja;Jang, Kyoung Soo;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.45-48
    • /
    • 2013
  • Rusts are plant diseases caused by pathogenic fungi of the order Pucciniales. Rusts can affect a variety of plants. Development of new effective and environmentally benign agents against rusts is of great interest. In this study, we investigated the disease control efficacy of the emulsion concentrate (EC10) and wettable powder (WP20) type formulations of the extract of Magnolia officinalis (Magjia90; containing honokiol and magnolol at 90%) against rust diseases of perilla and zoysiagrass in fields. The treatment of EC10 and WP20 of Magjia90 showed control values of 47.9% to 69.6% and Magjia90-WP20 reduced more effectively the development of rust symptoms on perilla plants than Magjia90-EC10. Magjia90-WP20 also highly suppressed zoysiagrass rust with control values of 65.7% to 80.5%. On the other hand, no harmful effect of Magjia90-EC10 and Magjia90-WP20 was observed on the perilla and zoysiagrass plants tested. The results strongly indicate that the extract of M. officinalis (Magjia90) can be used as a natural fungicide for the control of rust diseases.

Detection of Carnation necrotic fleck virus and Carnation ringspot virus Using RT-PCR (RT-PCR에 의한 카네이션괴저바이러스와 카네이션둥근반점바이러스 정밀진단)

  • Lee, Siwon;Kang, Eun-Ha;Heo, Noh-Yeol;Kim, Sang-Mok;Kim, Yu-Jeong;Shin, Yong-Gil
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • Carnation is considered to be one of the top three cutting flowers in the world, which is a main crop with 21 billion annual volume of manufacture. The four carnation items such as cuttings, seed, plant and unrooted cuttings are imported and exported. Viruses can be easily transmitted during vegetative propagation of carnation. Carnation necrotic fleck virus (CNFV) and Carnation ringspot virus (CRSV) are designated as Korea plant quarantine viruses and inspected. This study was aimed to develop specific primer sets for easy and rapid detection of CNFV and CRSV. Two RT-PCR primer sets were efficiently amplified 288 and 447 bp fragments for CNFV and 503 549 bp fragments for CRSV. Furthermore, developed nested primer sets make possible to high sensitive detection and verification. CNFV nested PCR primer sets all produced band of 147 bp and CRSV nested PCR primer sets did bands of 395 and 347 bp. In addition, plasmid inserted 6 sequences in amplicon were used as a positive control to improve inspection confidence. The successful application of PCR module newly developed in this study will be highly useful for detect of CNFV and CRSV for quarantine inspections.

Occurrence of Sclerotium Rot of Cucumber Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 오이 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Lee, Sang-Dae;Choi, Okryun;Shen, Shun-Shan;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.229-232
    • /
    • 2013
  • Sclerotium rot of cucumber (Cucumis sativus L.) occurred at the experimental field of Gyeongsangnam-do Agricultural Research and Extension Services in July 2012. The typical symptoms included wilt, rot, and water-soaking on stems and fruits and severely infected plants eventually died. White mycelial mats spread over lesions, and then sclerotia were formed on fruit and near soil line. The sclerotia were globoid in shape, white to brown in color and 1-3 mm in size and the hyphal width was 4-8 ${\mu}m$. The optimum temperature for mycelial growth and sclerotia formation on PDA was $30^{\circ}C$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. For further identification, the complete internal transcribed spacer (ITS) rDNA region was amplified and sequenced. On the basis of mycological characteristics, ITS rDNA region comparison, and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report of sclerotium rot on cucumber caused by S. rolfsii in Korea.

Biological Control of White Rot in Garlic Using Burkholderia pyrrocinia CAB08106-4 (Burkholderia pyrrocinia CAB08106-4 균주를 이용한 마늘 흑색썩음균핵병의 생물학적 방제)

  • Han, Kwang Seop;Kim, Buyng Ryun;Kim, Jong Tae;Hahm, Soo Sang;Hong, Ki Heung;Chung, Chang Kook;Nam, Yun Gyu;Yu, Seung Hun;Choi, Jae Eul
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2013
  • White rot caused by Sclerotium cepivorum was reported to be severe soil-born disease on garlic. Disease progress of white rot of garlic (Allium sativum L.) was investigated during the growing season of 2009 to 2011 at Taean and Seosan areas. The white rot disease on bulb began to occur from late April and peaked in late May. The antifungal bacteria, Burkholderia pyrrocinia CAB08106-4 was tested in field bioassay for suppression of white rot disease. As a result of the nucleotide sequence of the gene 16S rRNA, CAB008106-4 strain used in this study has been identified as B. pyrrocinia. B. pyrrocinia CAB080106-4 isolate suppressed the white rot with 69.6% control efficacy in field test. These results suggested that B. pyrrocinia CAB08106-4 isolate could be an effective biological control agent against white rot of garlic.

Pink Mold Rot on Unishiu Orange (Citrus unshiu Mac.) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 감귤 분홍빛열매썩음병 발생)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Choi, Okhee;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.226-228
    • /
    • 2013
  • In 2012, a pink mold rot was observed on unishiu orange (Citrus unshiu Mac.) fruits at the Wholesale Market for Agricultural Products, Jinju, Korea. The symptom on unishiu orange was a water-soaked lesion on the surface of fruit, which later on enlarged to form softened brown rot lesions. The diseased fruits were covered with pink-colored mold, consisting of conidia and conidiophores of the pathogen. Optimum temperature for mycelial growth was $25^{\circ}C$. Conidia were hyaline, smooth, 2-celled, and thick-walled conidia with truncate bases, ellipsoidal to pyriform, characteristically held together zig-zag chains and $12-26{\times}8-12{\mu}m$ in size. Conidiophore was erect, colorless, unbranched, and 4-5 ${\mu}m$ wide. On the basis of mycological characteristics, pathogenicity test, and molecular analysis with complete ITS rDNA region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray. This is the first report of pink mold rot caused by T. roseum on unishiu orange in Korea.

Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria (길항세균을 이용한 상추 균핵병의 생물학적 방제)

  • Chon, Bong-Goan;Park, Suji;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.12-20
    • /
    • 2013
  • To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0-100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6) and B. cereus (C210) showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

Changes in Sensitivity Levels of Botrytis spp. Population Isolated from Lily to Fungicides and Control under Field Condition (나리에서 분리한 잎마름병균의 살균제에 대한 감수성 변화와 포장 방제)

  • Hahm, Soosang;Kyeong, Kicheon;Kim, Byungryun;Han, Kwangseop;Choi, Jongjin;Nam, Yunkyu;Yu, Seunghun
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Forty eight isolates of Botrytis elliptica and 23 isolates of B. cinerea from several locations in Korea were tested for resistance to fungicides used in the farmer's fields. Isolation frequency of B. elliptica having $EC_{50}$ (effective concentration of 50%) value $500-1000{\mu}g/ml$ to benomyl and mancozeb appeared highly, suggesting that the two fungicides are not effective in controlling leaf blight of lily in the field. The isolates were tested for resistance to fungicides procymidone and iprodione which were most commonly used in the farmer's fields. The rates of $EC_{50}$ value $5-50{\mu}g/ml$ to procymidome and iprodione were 93.7% and 100%, respectively, and those of $0-0.1{\mu}g/ml$ to diethofencarb+carbendazim and fludioxonil were 98.0% and 93.8%, respectively. In the rain-protected cultivation, control of leaf blight of lily was the most effective when iprodine, diethofencarb+carbendazim, and fludioxonil were sprayed alternately four times during the growing season.

Optimal Spray Time, Interval and Number of Preventive Fungicides for the Control of Fruit Rots of Green and Gold Kiwifruit Cultivars (그린키위와 골드키위 과실무름병 예방약제의 적정 살포시기, 간격 및 횟수)

  • Kim, Gyoung Hee;Lee, Young Sun;Jung, Jae Sung;Hur, Jae-Seoun;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Optimal spray time, interval and number of preventive fungicides against fruit rots of kiwifruit were investigated at the orchard which both green kiwifruit cultivar 'Hayward' and gold kiwifruit cultivar 'Hort16A' are cultivating side by side during 2009 and 2010 growing seasons in Jeju island, Korea. The highest control efficiency was obtained from benomyl WP and followed by thiophanate-methyl WP and carbendazim+diethofencarb WP. The control efficacies of the fungicides were much higher when applied onto the kiwifruit canopy after the flowering time than before the flowering time but thereafter their control efficiencies were decreased drastically according to delays of spray timing. With increasing spray numbers of the fungicides, the control efficacy increased. However, optimal spray time, interval and number of the preventive fungicides for the effective control of fruit rots of kiwifruit were determined as 4 time-spray schedule with 2-week-interval just after the flowering time on both 'Hayward' and 'Hort16A' cultivars.

Resistance Evaluation of Radish (Raphanus sativus L.) Inbred Lines against Turnip mosaic virus (순무모자이크바이러스에 대한 무 육종 계통 저항성 평가)

  • Yoon, Ju-Yeon;Choi, Gug-Seoun;Kim, Su;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.60-64
    • /
    • 2017
  • Leaves of twenties radish (Raphanus sativus L.) inbred lines were mechanically inoculated with Turnip mosaic virus (TuMV) strain HY to evaluate TuMV resistance of the radish inbred lines. The inoculated radish plants were incubated at $22^{\circ}C{\pm}3^{\circ}C$ and resistance assessment was examined using symptom development for 4 weeks. Based on the reactions of differential radish inbred lines, 16 radish lines were produced mild mosaic, mottling, mosaic and severe mosaic symptoms by TuMV infection. These results were confirmed by RT-PCR analysis of TuMV coat protein gene, suggesting that TuMV is responsible for the disease symptoms. Four resistant radish lines did not induce systemic mosaic symptoms on upper leaves and chlorosis in stem tissues for 4 weeks, showing they were symptomless by 8 weeks. Further examination of TuMV infection in the 4 radish lines showed no TuMV infection in all systemic leaves. These results suggest that the 4 radish lines are highly resistant to TuMV.

Occurrence of Viruses Infecting Foxtail Millet (Setaria italica) in South Korea (국내에 발생하는 조 바이러스의 종류 및 발생 실태)

  • Park, Chung Youl;Min, Hyun-Geun;Lee, Hong-Kyu;Yeom, Yoon Ah;Oh, Jonghee;Kim, Bong-Sub;Bae, Dae-Hyeon;Yoon, Young-Nam;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • In 2015, a nationwide survey was carried out to investigate about occurrence pattern of virus infecting foxtail millet. A total 100 foxtail millet leaf samples showing virus-like and abnormal symptoms were collected in the seven main cultivated regions of Korea. Four viruses were identified using reverse transcription polymerase chain reaction and RNA sequencing. Of the collected 100 foxtail millet samples, 10 were Barley virus G (BVG), 4 were Rice stripe virus (RSV), 1 was Northern cereal mosaic virus (NCMV), and 1 was Sugarcane yellow leaf virus (ScYLV) infection. To our best knowledge, this is the first report of BVG and NCMV infecting foxtail millet in Korea and ScYLV is expected as new Polerovirus species. This research will be useful in breeding for improved disease-resistant foxtail millet cultivars.