• Title/Summary/Keyword: pathogenicity island

Search Result 44, Processing Time 0.019 seconds

Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528 (Pseudomonas syringae pv. tabaci 에서 식물세포접촉에 의한 병원성 유전자의 조절)

  • Lee, Jun-Seung;Cha, Ji-Young;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.227-234
    • /
    • 2011
  • The hrp gene cluster in the plant pathogen Pseudomonas syringae is a key determinant of pathogenicity. Recent studies have demonstrated that specific host cell induction of the Ralstonia solanacearum hrp gene cluster is controlled by the PrhA (plant regulator of hrp) receptor. To characterize the role that P. syringae PrhA plays in the virulence of plant cells, a prhA homolog was isolated from P. syringae pv. tabaci and a $\Delta$prhA mutant was constructed by allelic exchange. The $\Delta$prhA mutant had reduced virulence in the host plant, and co-culture of P. syringae pv. tabaci and plant cell suspensions induced a much higher level of hrpA gene transcription than culture in hrp-inducing minimal medium. These results indicate that PrhA of P. syringae is a putative pathogen-plant cell contact sensor, therefore, we used a hrpA-gfp reporter fusion to monitor the in situ expression of PrhA. The results of this study demonstrated that PrhA induces hrp gene expression in P. syringae pv. tabaci in the presence of plant cells.

Characteristics of $\beta$-Streptococcus spp. Isolated in Cultured Flounder (Paralichthys olivaceus) of Jeju Island (제주산 양식넙치 (Paralichthys olivaceus)로부터 분리된 $\beta$-용혈성 연쇄구균 ($\beta$-Streptococcsus spp.)의 특성)

  • HEO Moon-Soo;SONG Choon Bok;LEE Jehee;YEO In-Kyu;JEON You-Jin;LEE Jung-Jae;CHUNG Sang-Chul;LEE Ki-Wan;RHO Sum;CHOI Kwang-Sik;LEE Young Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.365-369
    • /
    • 2001
  • Streptococcus spp. of bacterial pathogen of fish were isolated from the cultured flounder (Paralichthys olivaceus) in fish farm of Jeju Island. Clinical signs of the infected flounder which are the most commons symptoms are as follows: erratic swimming, darkening of the body colour, unilateral or bilateral exophthalmia, corneal opacity, hemorrhages in the opercular and the bases of the fins, and the ulceration of the body surface. Biochemical characteristics of pathogenic fish Streptococcus spp, were gram positive, spherical form, catalase negative, oxidase negative and $\beta$-haemolytic, respectively, The viable cells counted from the tissue of the diseased flounder were the largest in the order of the ulcer, the kidney, the blood and the brain, The drugs used were ampicillin, ciprofloxacin, doxycycline, gentamycin, tetracycline, erythromycin, streptomycin and oxytetracycline, Streptococcus spp. were found to be sensitive to ampicillin, ciprofloxacin, doxycycline and gentamycin, but were resistant to tetracycline, erythromycin, streptomycin and oxytetracycline. The pathogenicity of Streptococcus spp. on the cultured flounder with an abdominal cavity injection was high. The haemolytic activity of the toxin against the sheep red blood cells reached the maximum after 30 min incubation at $37^{\circ}C$ or $50^{\circ}C$. The toxin showed highest activity at pH $5.5\sim6.5$.

  • PDF

First Report of Waitea Ring Patch caused by Waitea circinata on Zoysiagrass (Zoysiagrass에 Waitea circinata에 의한 Waitea Ring Patch 발생)

  • Kim, Kyung-Duck;Hong, Sung-Chul;Jang, Kong-Man;Han, Muho;Pyee, Jae-Ho;Park, Dae-Sup
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.378-381
    • /
    • 2014
  • A new pathogen was isolated from zoysiagrass-planted park of Jeju island in 2014. Symptoms appeared a type of irregular patches occurring brownish leaf blight, followed by stem and crown rot. The symptom was very similar to that of large patch caused by Rhizoctonia solani, a well-known devastating zoysiagrass disease. The isolate showed thin orange-colored mycelia and screlotia were formed on the medium based on cultural characteristics. The causal agent of the disease was finally identified as Waitea circinata by analysis of ribosomal DNA. On the inoculation test, Waitea circinatae showed strong pathogenicity to the zoysiagrass. The mycelia were obviously observed in the inoculated tissues. This is the first report of Waitea ring patch caused by Waitea circinata on zoysiagrass.

Understanding Comprehensive Transcriptional Response of Salmonella enterica spp. in Contact with Cabbage and Napa Cabbage

  • Lee, Hojun;Kim, Seul I;Park, Sojung;Nam, Eunwoo;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1896-1907
    • /
    • 2018
  • Salmonellosis is commonly associated with meat and poultry products, but an increasing number of Salmonella outbreaks have been attributed to contaminated vegetables and fruits. Enteric pathogens including Salmonella enterica spp. can colonize diverse produce and persist for a long time. Considering that fresh vegetables and fruits are usually consumed raw without heat treatments, Salmonella contamination may subsequently lead to serious human infections. In order to understand the underlying mechanism of Salmonella adaptation to produce, we investigated the transcriptomics of Salmonella in contact with green vegetables, namely cabbage and napa cabbage. Interestingly, Salmonella pathogenicity island (SPI)-1 genes, which are required for Salmonella invasion into host cells, were up-regulated upon contact with vegetables, suggesting that SPI-1 may be implicated in Salmonella colonization of plant tissues as well as animal tissues. Furthermore, Salmonella transcriptomic profiling revealed several genetic loci that showed significant changes in their expression in response to vegetables and were associated with bacterial adaptation to unfavorable niches, including STM14_0818 and STM14_0817 (speF/potE), STM14_0880 (nadA), STM14_1894 to STM14_1892 (fdnGHI), STM14_2006 (ogt), STM14_2269, and STM14_2513 to STM14_2523 (cbi operon). Here, we show that nadA was required for bacterial growth under nutrient-restricted conditions, while the other genes were required for bacterial invasion into host cells. The transcriptomes of Salmonella in contact with cabbage and napa cabbage provided insights into the comprehensive bacterial transcriptional response to produce and also suggested diverse virulence determinants relevant to Salmonella survival and adaptation.

Omics-Based Analysis of the luxS Mutation in a Clinical Isolate of Escherichia coli O157:H7 in Korea

  • Kim, Jong-Chul;Yoon, Jang-Won;Kim, Jong-Bae;Oh, Kyung-Hwan;Park, Mi-Sun;Lee, Bok-Kwon;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.415-424
    • /
    • 2010
  • The purpose of this study was to investigate the relationship between the global regulatory mechanism known as quorum sensing and expression of virulence factors in Escherichia coli O157:87. A nonpolar luxS deletion was introduced into the chromosome of strain CI03J, a human clinical isolate from South Korea, to create the ${\Delta}luxS$ mutant strain ML03J. Phenotypic characterization of wild-type and mutant strains demonstrated that ML03J had no obvious growth or metabolic defects on 0.2% glucose LB medium, produced a functionally defective flagellum, and could not utilize sorbose; the biological significance of sorbose utilization is unknown. Omics-based analysis revealed the involvement of LuxS in the transcriptional activation of several flagella/chemotaxisrelated genes (flhD; fliA, C, D, S, Z; and cheA, Y, Z), repression of glutamate-dependent acid resistance genes (gadAB), and expression of virulence factors including Shiga toxin, hemolysin, and SepD within the LEE pathogenicity island.

Overview on Molecular Toxicological Aspects of Helicobacter pylori Virulence Factor, Cytotoxin-associated Antigen A (CagA) (헬리코박터 파이로리의 병원성 단백질, CagA에 대한 분자 독성학적 측면에서의 고찰)

  • Kim Byung J.;Jung Hwa Jin;Hwang Jee Na;Kang Seok Ha;Oh Se-Jin;Seo Young Rok
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.179-185
    • /
    • 2004
  • Helicobacter pylori (H. pylori) infects more than half of the people in the world as a major microbe to cause most of gastric diseases. Recently, cytotoxin associated-antigen A (CagA) is believed as one of the most important virulence factors of H. pylori. Molecular toxicological pathway of CagA is necessary to investigate for understanding the pathological and toxicological aspects of H. pylori, since this virulence protein harasses intercellular processes of host cells to get profit for the survival of H. pylori. CagA is coded from cag pathogenicity island (cag PAI) and translocated into host cells by Type 4 secretion system (TFSS). Tyrosine phosphorylation of CagA targets Src homology 2-containing phosphotyrosine phosphatase (SHP-2) to form a CagA-SHP-2 complex. This complex depends on the similarity of sequence between EPIYA motif and Src homology 2 domain (SH2 domain) of CagA. The generation of growth factors is an essential role of CagA in protecting and healing gastric mucosa for the survival of H. pylori. On the other hand, the activation of IL-8 by CagA induces neutrophils generating inflammation and free radicals. Indeed, free radicals are well known carcinogen to induce DNA damage. In addition, the transduction of mitogen-activation signal by CagA is one of the interesting features to understand how to cause cancer. The relationship between cancer and inflammation with CagA was mainly discussed in this review.

Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce

  • Park, Sojung;Nam, Eun woo;Kim, Yeeun;Lee, Seohyeon;Kim, Seul I;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1729-1738
    • /
    • 2020
  • Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

Characterization of the Causal Fungus of Citrus Melanose, Diaphorthe citri Isolated from Blighted Twigs of Citrus in Jeju (감귤나무 가지에서 분리한 검은점무늬병균 Diaporthe citri의 균학적 특성)

  • Kwon, Hyeog-Mo;Nam, Ki-Woong;Kim, Kwang-Sik;Kim, Dong-Hwan;Lee, Seong-Chan;Hyeon, Jae-Wook
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.153-158
    • /
    • 2003
  • Mycological characteristics of Phomopsis citri isolates obtained from blighted twigs of citrus cultivation areas in Jeju island were all identified as Phomopsis citri known as the anamorph stage of Diaporthe citri. Pycnidia the isolates sized from 112.2 to 614.4${\mu}m$ (av. 328.8${\mu}m$) and shaped conical to lenticulata in black. Two types of phialospores, ${\alpha}$-and ${\beta}$-spores were observed from pycnidia. The ${\alpha}$-spores were hyaline, unicellula, fusiform to ellipsoidal and sized 4.7~8.7 1.9 ${\times}$ 3.5${\mu}m$ (av. 6.7 ${\times}$ 2.3 ${\mu}m$). The ${\beta}$-spores were hyaline, unicellula, filiform, curved and often strongly hooked and sized 13.2~27.1 ${\times}$ 0.8~1.6 ${\mu}m$ (av. 22.1 ${\times}$ 1.0 ${\mu}m$). All isolates grew well and produced abundant pycnidia and spore horns on PDA. In addition, all isolates showed strong pathogenicity to citrus fruit inducing melanose symptoms when artificially inoculated with the pycnidial spores.