• 제목/요약/키워드: pathogenicity genes

검색결과 203건 처리시간 0.022초

Identification of Botrytis cinerea, the Cause of Post-Harvest Gray Mold on Broccoli in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Hong, Sae-Jin;Kim, Byung-Sup
    • 식물병연구
    • /
    • 제23권4호
    • /
    • pp.372-378
    • /
    • 2017
  • In this study, we identified the causative agent of post-harvest gray mold on broccoli that was stored on a farmers' cooperative in Pyeongchang, Gangwon Province, South Korea, in September 2016. The incidence of gray mold on broccoli was 10-30% after 3-5 weeks of storage at $3^{\circ}C$. Symptoms included brownish curd and gray-to-dark mycelia with abundant conidia on the infected broccoli curds. The fungus was isolated from infected fruit and cultured on potato dextrose agar. To identify the fungus, we examined the morphological characteristics and sequenced the rDNA of the fungus and confirmed its pathogenicity according to Koch's postulates. The results of the morphological examination, pathogenicity test, and sequencing of the 5.8S rDNA of the internal transcribed spacer regions (ITS1 and ITS4) and three nuclear protein-coding genes, G3PDH, HSP60, and RPB2, revealed that the causal agent of the post-harvest gray mold on broccoli was Botrytis cinerea. To our knowledge, this is the first report of post-harvest gray mold on broccoli in Korea.

Occurrence of Leaf Blight on Cosmos Caused by Alternaria cosmosa in Korea

  • Deng, Jian Xin;Lee, Ji Hye;Paul, Narayan Chandra;Cho, Hye Sun;Lee, Hyang Burm;Yu, Seung Hun
    • The Plant Pathology Journal
    • /
    • 제31권1호
    • /
    • pp.78-82
    • /
    • 2015
  • In 2011, a leaf blight disease was observed on cosmos (Cosmos bipinnatus) leaves in Nonsan, Korea. The causal pathogen was isolated and identified based on morphological and molecular approaches. Morphological characteristics of the pathogen matched well with the Alternaria cosmosa and also easily distinguishable from Alternaria zinniae reported from cosmos seeds by producing branched beak. Phylogenetically, the pathogen could not be distinguished from A. passiflorae based on the sequence analysis of a combined data set of Alt a1 and gpd genes. However, A. passiflorae was distinguished from the present species by having conidiophores with 4 to 5 conidiogenous loci. The results indicate that the present Alternaria species is A. cosmosa. Pathogenicity tests revealed that the isolate was pathogenic to the leaves of Cosmos bipinnatus. This is the first report of Alternaria blight disease caused by A. cosmosa on cosmos in Korea.

Morphology, Molecular Phylogeny and Pathogenicity of Colletotrichum panacicola Causing Anthracnose of Korean Ginseng

  • Choi, Kyung-Jin;Kim, Wan-Gyu;Kim, Hong-Gi;Choi, Hyo-Won;Lee, Young-Kee;Lee, Byung-Dae;Lee, Sang-Yeob;Hong, Sung-Kee
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Colletotrichum panacicola isolates were obtained from anthracnose lesions of Korean ginseng and compared with four Colletotrichum species in morphology, molecular phylogeny and pathogenicity. Based on morphological characteristics, C. panacicola was easily distinguished from Colletotrichum gloeosporioides but not from Colletotrichum higginsianum, Colletotrichum destructivum and Colletotrichum coccodes. A phylogenetic tree generated from ribosomal DNA-internal transcribed spacer sequences revealed that C. panacicola is remarkably distinguished from C. gloeosporioides and C. coccodes but not from C. higginsianum and C. destructivum. However, molecular sequence analysis of three combined genes (actin + elongation factor-$1{\alpha}$ + glutamine synthatase) provided sufficient variability to distinguish C. panacicola from other Colletotrichum species. Pathogencity tests showed that C. panacicola is pathogenic to Korean ginseng but not to other plants. These results suggest that C. panacicola is an independent taxon distin-zguishable from C. gloeosporioides and other morphologically similar Colletotrichum species.

First Report of Soft Rot Caused by Pectobacterium brasiliense on Cucumber in Korea

  • Soo-Min Hong;Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;In-Kyu Kang;Seung-Yeol Lee;Hee-Young Jung
    • 식물병연구
    • /
    • 제29권3호
    • /
    • pp.304-309
    • /
    • 2023
  • Wilted and water-soaked lesion symptoms were observed on cucumbers in greenhouses located in Daejeon, Chungcheongnam-do, Korea, in June 2021. A bacterial strain, designated KNUB-04-21, was isolated from the cucumbers, which was subsequently identified as Pectobacterium brasiliense through a phylogenetic analysis based on sequences of the 16S rRNA region, dnaX, leuS, and recA genes. The biochemical characteristics of KNUB-04-21 were also similar to those of P. brasiliense through investigation using the API ID 32 GN system. The pathogenicity of KNUB-04-21 was confirmed by inoculating it into healthy cucumber plants. The reisolated strains were also found to be same to the original strain. To our knowledge, this is the first report of P. brasiliense being identified as the causative agent of cucumber soft rot in Korea.

First report of anthracnose crown rot caused by Colletotrichum siamense on strawberry in Korea

  • Myeong Hyeon Nam;Myung Soo Park;Je hyeok Yoo;Byung Joo Lee;Jong Nam Lee
    • 한국균학회지
    • /
    • 제50권3호
    • /
    • pp.235-241
    • /
    • 2022
  • Anthracnose crown rot (ACR) has been observed in greenhouses during the nursery and harvest seasons in Gangwon Province, Korea. Infected plants showed black leaf spot, dark sunken pink conidial masses on petioles, wilting, and eventually death. Five isolates were obtained from the lesions of strawberry plants and were identified as a Colletotrichum gloeosporioides species complex based on their cultural and morphological characteristics. Multilocus sequence analysis of actin, calmodulin, chitin synthase, glyceraldehyde-3-phophate dehydrogenase genes, and internal transcribed spacer rDNA regions showed that the isolates formed a monophyletic group with the type strain of C. siamense. Pathogenicity tests were performed on the isolate, and Koch's postulates were performed to verify the relationship between Colletotrichum sp. and the strawberry plant variety Seolhyang. The isolate was pathogenic to strawberry plants, which exhibited typical ACR symptoms. Based on morphological characteristics, pathogenicity, and DNA sequence analyses, the fungus isolated in Korea was identified as C. siamense. This is first time C. siamense has been confirmed in ever-bearing strawberry varieties in Korea.

First Report of Pectobacterium aroidearum Causing Soft Rot on Zamioculcas zamiifolia

  • Kyoung-Taek Park;Soo-Min Hong;Leonid N. Ten;Chang-Gi Back;Seung-Yeol Lee;In-Kyu Kang;Hee-Young Jung
    • 식물병연구
    • /
    • 제29권4호
    • /
    • pp.445-451
    • /
    • 2023
  • Zamioculcas zamiifolia is a popular indoor ornamental plant in Korea. In August 2021, a severe outbreak of soft rot disease affected Z. zamiifolia in Emseong, Chungcheongbuk-do, Korea. Infected plants displayed wilting, water-soaked lesions, stem collapse, and green-brown discoloration. The bacterial strain KNUB-05-21 was isolated from infected stems and identified as Pectobacterium aroidearum using 16S rRNA nucleotide sequencing and multilocus sequence analysis based on partial sequences of dnaX, leuS, and recA genes. Confirmation of its affiliation with P. aroidearum was also obtained through biochemical and morphological characterization. To confirm the pathogenicity of strain KNUB-05-21, its suspension was injected into Z. zamiifolia stems. Within a week, soft rot developed on the stems, exhibiting symptoms similar to those observed in field-infected plants. The reisolated strain was identical to those of P. aroidearum. Before this study, P. aroidearum was not reported as a causative pathogen of Z. zamiifolia soft rot in Korea.

First Report of Pectobacterium brasiliense Causing Bitter Melon Soft Rot Disease in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Soo-Min Hong;Chang-Gi Back;Seung-Yeol Lee;Hee-Young Jung
    • 식물병연구
    • /
    • 제29권4호
    • /
    • pp.452-458
    • /
    • 2023
  • In the Goesan region, located in Chungcheongbuk-do, Korea, a significant outbreak of soft rot infections was documented in August 2021, affecting fruits of Momordica charantia, commonly known as bitter melon or bitter gourd. The symptoms included a noticeable transition to yellowing in the affected fruits, eventually leading to their collapse. The bacterial strain KNUB-09-21 was isolated from the diseased fruits. Molecular analysis, using the sequences of the 16S rRNA region and three housekeeping genes (dnaX, recA, and leuS), along with the results of compound utilization in the API ID 32 GN system, provide strong evidence for the identification of the isolate KNUB-09-21 as Pectobacterium brasiliense. The pathogenicity of strain KNUB-09-21 on M. charantia was confirmed through a controlled inoculation test. Within two days, inoculated fruits displayed soft rot symptoms closely resembling those observed in naturally affected fruits. This is the first report of soft rot on M. charantia in Korea.

First Report of Pectobacterium aroidearum Causing Soft Rot on Ficus carica in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Soo-Min Hong;Song-Woon Nam;Chang-Gi Back;Seung-Yeol Lee;Hee-Young Jung
    • 식물병연구
    • /
    • 제30권1호
    • /
    • pp.88-94
    • /
    • 2024
  • In July 2021, symptoms of soft rot were observed on the stems of Ficus carica in Yeongam, Jeollanamdo, Korea. To accurately diagnose the cause, infected stem was collected and bacterial strain was isolated. Among these, the pathogenic strain KNUB-08-21 was identified as Pectobacterium aroidearum through 16S rRNA gene sequencing and phylogenetic analysis based on the concatenated sequences of the dnaX, leuS, and recA genes. The affiliation of the isolate with this bacterial species was also confirmed by its biochemical characteristics obtained using API ID 32 GN system. Artificial inoculation confirmed the strain's pathogenicity in figs, causing significant damage to both stems and fruits. To our knowledge, this is the first report of P. aroidearum causing soft rot disease in F. carica in Korea.

Xanthomonas campestris pv. campestris의 병원성 관련 형질 탐색에 관한 연구 (Molecular Approaches to Evaluate the Role of Some Genes Required for Plant Pathogenicity of Xanthomonas campestris pv. campestris)

  • 배동원;윤한대;김희규
    • 한국식물병리학회지
    • /
    • 제13권3호
    • /
    • pp.172-178
    • /
    • 1997
  • 십자화과 작물에 발생하는 검은썩음병(Black rot or Black vein of crucifer)의 병원성 세균인 Xanthomonas campestris pv. crucifer)의 병원성 세균인 Xanthomonas campestris pv. campestris를 분리, 동정하고 병원성을 검정하였다. 이 X. c. pv. campestris 는 3가지 종의 Chinese cabbage에 병원성을 나타내었고, 병원성과 관련된 특성을 결정하기 위하여 Tn5 mutagenesis를 실시 cellulase negative mutant를 선발하여 병원성 검정하였다. 선발된 cellulase negative mutant를 배추에 분무 접종하여 광학 현미경과 전자현미경으로 관찰한 결과 cellulase negative mutant는 wild type와 함께 기공표면과 기공하부조직에서 정착하였지만 그 밀도는 낮았다. 반면 접종 24시간 이후 wild type은 기공표면과 기공하부조직이 lysis되기 시작하여 48시간 이후에는 병원성의 진전으로 보다 많이 lysis되었다. 6일 후, wild type은 cellulase활성에 의해 식물체 조직에서 높은 증식력을 보이며 조직을 lysis 시키고 또한 조직 깊숙이 침입, 정착하는 것을 관찰하였다. 이 결과로 X. c. pv.c campestris의 cellulase는 병원성에 관여하는 중요한 요인으로 생각된다.

  • PDF

Genetic and Pathogenic Characterization of Bacterial Wilt Pathogen, Ralstonia pseudosolanacearum (Ralstonia solanacearum Phylotype I), on Roses in Korea

  • Lee, Ingyeong;Kim, Yeong Son;Kim, Jin-Won;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.440-449
    • /
    • 2020
  • The purpose of this study was to analyze the genetic and pathogenic characteristics of Ralstonia pseudosolanacearum in roses in Korea, and to examine the similarities and differences between Korean isolates and the first-reported European strains. Between 2017 and 2019, seventeen isolates from rose plants were identified as R. pseudosolanacearum using Ralstonia-specific primers. All 17 isolates were identified as race 1 using race-specific primers, and were confirmed as biovar 3 due to their ability to utilize carbon sources. Multiplex PCR using phylotype discriminating specific primers identified the 17 isolates as phylotype I. Sequevar comparison with reference sequevars using the sequences of the egl, mutS, and fliC genes, and only the egl gene, revealed that the strains evaluated in this study corresponded to sequevar I-33. The pathogenicity in roses differed depending on the rose cultivars. The different methods used for the genetic characterization of R. pseudosolanacearum indicate that the 17 rose bacterial wilt isolates had the same genetic characteristics. The lack of genetic variation in these isolates indicates their recent introduction from other countries (likely European countries). Therefore, appropriate quarantine and control measures should be taken in order to avoid further increases in the pathogenicity and/or secondary host range of R. pseudosolanacearum through genetic mutation.