• 제목/요약/키워드: pathogenesis-related proteins

검색결과 102건 처리시간 0.035초

Characterization of Burkholderia glumae Putative Virulence Factor 11 (PVF11) via Yeast Two-Hybrid Interaction and Phenotypic Analysis

  • Kim, Juyun;Kim, Namgyu;Mannaa, Mohamed;Lee, Hyun-Hee;Jeon, Jong-Seong;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.280-286
    • /
    • 2019
  • In this study, PVF11 was selected among 20 candidate pathogenesis-related genes in Burkholderia glumae based on its effect on virulence to rice. PVF11 was found to interact with several plant defense-related WRKY proteins as evidenced through yeast-two hybrid analysis (Y2H). Moreover, PVF11 showed interactions with abiotic and biotic stress response-related rice proteins, as shown by genome-wide Y2H screening employing PVF11 and a cDNA library from B. glumae-infected rice. To confirm the effect of PVF11 on B. glumae virulence, in planta assays were conducted at different stages of rice growth. As a result, a PVF11-defective mutant showed reduced virulence in rice seedlings and stems but not in rice panicles, indicating that PVF11 involvement in B. glumae virulence in rice is stage-dependent.

Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases

  • Won Kyu Kim;Wooseon Choi;Barsha Deshar;Shinwon Kang;Jiyoon Kim
    • Molecules and Cells
    • /
    • 제46권4호
    • /
    • pp.191-199
    • /
    • 2023
  • The Golgi apparatus modifies and transports secretory and membrane proteins. In some instances, the production of secretory and membrane proteins exceeds the capacity of the Golgi apparatus, including vesicle trafficking and the post-translational modification of macromolecules. These proteins are not modified or delivered appropriately due to the insufficiency in the Golgi function. These conditions disturb Golgi homeostasis and induce a cellular condition known as Golgi stress, causing cells to activate the 'Golgi stress response,' which is a homeostatic process to increase the capacity of the Golgi based on cellular requirements. Since the Golgi functions are diverse, several response pathways involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/ETS, and PERK regulate the capacity of each Golgi function separately. Understanding the Golgi stress response is crucial for revealing the mechanisms underlying Golgi dynamics and its effect on human health because many signaling molecules are related to diseases, ranging from viral infections to fatal neurodegenerative diseases. Therefore, it is valuable to summarize and investigate the mechanisms underlying Golgi stress response in disease pathogenesis, as they may contribute to developing novel therapeutic strategies. In this review, we investigate the perturbations and stress signaling of the Golgi, as well as the therapeutic potentials of new strategies for treating Golgi stress-associated diseases.

Theobroxide Treatment Inhibits Wild Fire Disease Occurrence in Nicotiana benthamiana by the Overexpression of Defense-related Genes

  • Ahn, Soon Young;Baek, Kwang-Hyun;Moon, Yong Sun;Yun, Hae Keun
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.110-115
    • /
    • 2013
  • Theobroxide, a novel compound isolated from a fungus Lasiodiplodia theobromae, stimulates potato tuber formation and induces flowering of morning glory by initiating the jasmonic acid synthesis pathway. To elucidate the effect of theobroxide on pathogen resistance in plants, Nicotiana benthamiana plants treated with theobroxide were immediately infiltrated with Pseudomonas syringae pv. tabaci. Exogenous application of theobroxide inhibited development of lesion symptoms, and growth of the bacterial cells was significantly retarded. Semiquantitative RT-PCRs using the primers of 18 defense-related genes were performed to investigate the molecular mechanisms of resistance. Among the genes, the theobroxide treatment increased the expression of patho-genesis-related protein 1a (PR1a), pathogenesis-related protein 1b (PR1b), glutathione S-transferase (GST), allen oxide cyclase (AOC), and lipoxyganase (LOX). All these data strongly indicate that theobroxide treatment inhibits disease development by faster induction of defense responses, which can be possible by the induction of defense-related genes including PR1a, PR1b, and GST triggered by the elevated jasmonic acid.

Global analysis of ginsenoside Rg1 protective effects in β-amyloid-treated neuronal cells

  • Shim, Ji Seon;Song, Min-Young;Yim, Sung-Vin;Lee, Seung-Eun;Park, Kang-Sik
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.566-571
    • /
    • 2017
  • Background: A number of reports have described the protective effects of ginsenoside Rg1 (Rg1) in Alzheimer's disease (AD). However, the protective mechanisms of Rg1 in AD remain elusive. Methods: To investigate the potential mechanisms of Rg1 in ${\beta}$-amyloid peptide-treated SH-SY5Y cells, a comparative proteomic analysis was performed using stable isotope labeling with amino acids in cell culture combined with nano-LC-MS/MS. Results: We identified a total of 1,149 proteins in three independent experiments. Forty-nine proteins were significantly altered by Rg1 after exposure of the cells to ${\beta}$-amyloid peptides. The protein interaction network analysis showed that these altered proteins were clustered in ribosomal proteins, mitochondria, the actin cytoskeleton, and splicing proteins. Among these proteins, mitochondrial proteins containing HSD17B10, AARS2, TOMM40, VDAC1, COX5A, and NDUFA4 were associated with mitochondrial dysfunction in the pathogenesis of AD. Conclusion: Our results suggest that mitochondrial proteins may be related to the protective mechanisms of Rg1 in AD.

전단력이 연골세포에 미치는 영향에 관한 연구 (THE SHEAR STRESS PROTEOME OF CHONDROCYTES)

  • 김신엽;김성곤;최제용;남동석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권1호
    • /
    • pp.9-15
    • /
    • 2005
  • The objective of this study is screening the shear stress related proteins in chondrocytes using twodimensional electrophresis and MALDI-TOF. C-28/I2 cell line were grown. The fluid-induced shear stress(FISS) was applied using a cone viscometer at a rotational velocity of 80rpm for periods of 12 hours. Control cultures were tested under identical conditions without mechanical load application. Collected samples were used for the two-dimensional electrophoresis and MALDI-TOF. The identified proteins were calcyclin, RPE-spondin, interleukin-2, extracellular signal regulated kinase (ERK), lamin B2, porA protein, and RET-ELE1 protein. All of them showed a decreased expression. In conclusion, seven proteins were identified as a shear stress related proteins in chondrocytes. As the destruction of articular cartilage is one of main pathogenesis of TMJ internal derangement, this study will give useful information for the understanding of the molecular aspect of TMJ disease.

Tau mis-splicing in the pathogenesis of neurodegenerative disorders

  • Park, Sun Ah;Ahn, Sang Il;Gallo, Jean-Marc
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.405-413
    • /
    • 2016
  • Tau proteins, which stabilize the structure and regulate the dynamics of microtubules, also play important roles in axonal transport and signal transduction. Tau proteins are missorted, aggregated, and found as tau inclusions under many pathological conditions associated with neurodegenerative disorders, which are collectively known as tauopathies. In the adult human brain, tau protein can be expressed in six isoforms due to alternative splicing. The aberrant splicing of tau pre-mRNA has been consistently identified in a variety of tauopathies but is not restricted to these types of disorders as it is also present in patients with non-tau proteinopathies and RNAopathies. Tau mis-splicing results in isoform-specific impairments in normal physiological function and enhanced recruitment of excessive tau isoforms into the pathological process. A variety of factors are involved in the complex set of mechanisms underlying tau mis-splicing, but variation in the cis-element, methylation of the MAPT gene, genetic polymorphisms, the quantity and activity of spliceosomal proteins, and the patency of other RNA-binding proteins, are related to aberrant splicing. Currently, there is a lack of appropriate therapeutic strategies aimed at correcting the tau mis-splicing process in patients with neurodegenerative disorders. Thus, a more comprehensive understanding of the relationship between tau mis-splicing and neurodegenerative disorders will aid in the development of efficient therapeutic strategies for patients with a tauopathy or other, related neurodegenerative disorders.

Partial Characterization of the Pathogenic Factors Related to Chlamydia trachomatis Invasion of the McCoy Cell Membrane

  • Yeo, Myeng-Gu;Kim, Young-Ju;Park, Yeal
    • Journal of Microbiology
    • /
    • 제41권2호
    • /
    • pp.137-143
    • /
    • 2003
  • The present study was performed to identify pathogenic factors of Chlamydia trachomatis, which invade the host cell membrane. We prepared monoclonal antibody against C. trachomatis and searched for pathogenic factors using this antibody, and subsequently identified the surface components of the elementary body of C. trachomatis, i.e., major outer membrane protein (MOMP), lipopolysaccharide (LPS), and two other surface exposure proteins. These proteins are believed to be important in the pathogenesis of host cell chlamydial infection. Additionally, to identify factors related to the host cell and C. trachomatis, we prepared C. trachomatis infected and non-infected McCoy cell extracts, and reacted these with anti-chlamydial LPS monoclonal antibody. We found that anti-chlamydial LPS monoclonal antibody reacted with a 116 kDa proteinaceous McCoy cell membrane component.

Oxidative Modification of Neurofilament-L by the Cytochrome c and Hydrogen Peroxide System

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.77-80
    • /
    • 2007
  • As neurofilament proteins are major cytoskeletal components of neuron, abnormality of neurofilament is proposed in brain with neurodegenerative disorders such as Parkinson's disease (PD). Since oxidative stress might play a critical role in altering normal brain proteins, we investigated the oxidative modification of neurofilament-L (NF-L) induced by the reaction of cytochrome c with H2O2. When NF-L was incubated with cytochrome c and H2O2, the protein aggregation was increased in cytochrome c and H2O2 concentrationsdependent manner. Radical scavengers, azide, formate and N-acetyl cysteine, prevented the aggregation of NFL induced by the cytochrome c/H2O2 system. The formations of carbonyl group and dityrosine were obtained in cytochrome c/H2O2-mediated NF-L aggregates. Iron specific chelator, desferoxamine, prevented the cytochrome c/H2O2 system-mediated NF-L aggregation. These results suggest that the cytochrome c/H2O2 system may be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of PD and related disorders.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

Expressed sequence tags (ESTs) analysis of Acanthamoeba healyi

  • Kong, Hyun-Hee;Hwang, Mee-Yeul;Kim, Hyo-Kyung;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • 제39권2호
    • /
    • pp.151-160
    • /
    • 2001
  • Randomly selected 435 clones from Acanthamoeba healyi cDNA library were sequenced and a total of 387 expressed sequence tags (ESTs) had been generated. Based on the results of BLAST search, 130 clones (34.4%) were identified as the genes enconding surface Proteins , enzymes for DNA, energy Production or other metabolism, kinases and phosphatases, protease, proteins for signal transduction, structural and cytoskeletal proteins, cell cycle related proteins, transcription factors, transcription and translational machineries, and transporter proteins. Most of the genes (88.5%) are newly identified in the genus Acanthamoeba. Although 15 clones matched the genes of Acanthamoeba located in the public databases, twelve clones were actin gene which was the most frequently expressed gene in this study. These ESTs of Acanthamoeba would give valuable information to study the organism as a model system for biological investigations such as cytoskeleton or cell movement, signal transduction, transcriptional and translational regulations. These results would also provide clues to elucidate factors for pathogenesis in human granulomatous amoebic encephalitis or keratitis by Acanthamoeba.

  • PDF