• Title/Summary/Keyword: pathogenesis-related proteins

Search Result 102, Processing Time 0.022 seconds

Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper (식물근권에서 분리한 Pseudomonas fluorescens strain EP103에 의한 고추역병억제)

  • Kim, Tack-Soo;Dutta, Swarnalee;Lee, Se Won;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.422-428
    • /
    • 2014
  • Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth improvement in terms of fresh weight and root length compared to the untreated control and other endophytic strains. When challenged with Phytophthora capsici, there was significant reduction of disease in EP103 treated plants with an efficacy of 78.7%. There was no direct inhibition of the target pathogen by EP103 when tested under in vitro antibiosis assay. Analysis of differential expression of selected marker genes for induced systemic resistance (ISR) in plants treated with EP103 and challenged with P. capsici showed up-regulation of PR1 and PR10 pathogenesis-related (PR) proteins. PCR analysis showed that EP103 produced secondary metabolites such as pyoluteorin, pyrrolnitrin, hydrogen cyanide and orfamide A. This study indicated the potential of endophytic P. fluorescens strain EP103 as an efficient biocontrol agent against P. capsici in chili pepper plant.

Comparative Genomics Profiling of Clinical Isolates of Helicobacter pylori in Chinese Populations Using DNA Microarray

  • Han, Yue-Hua;Liu, Wen-Zhong;Shi, Yao-Zhou;Lu, Li-Qiong;Xiao, Shudong;Zhang, Qing-Hua;Zhao, Guo-Ping
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • In order to search for specific genotypes related to this unique phenotype, we used whole genomic DNA microarray to characterize the genomic diversity of Helicobacter pylori (H. pylori) strains isolated from clinical patients in China. The open reading frame (ORF) fragments on our microarray were generated by PCR using gene-specific primers. Genomic DNA of H. pylori 26695 and J99 were used as templates. Thirty-four H. pylori isolates were obtained from patients in Shanghai. Results were judged based on In(x) transformed and normalized Cy3/Cy5 ratios. Our microarray included 1882 DNA fragments corresponding to 1636 ORFs of both sequenced H. pylori strains. Cluster analysis, revealed two diverse regions in the H. pylori genome that were not present in other isolates. Among the 1636 genes, 1091 (66.7%) were common to all H. pylori strains, representing the functional core of the genome. Most of the genes found in the H. pylori functional core were responsible for metabolism, cellular processes, transcription and biosynthesis of amino acids, functions that are essential to H. pylori's growth and colonization in its host. In contrast, 522 (31.9%) genes were strain-specific genes that were missing from at least one strain of H. pylori. Strain-specific genes primarily included restriction modification system components, transposase genes, hypothetical proteins and outer membrane proteins. These strain-specific genes may aid the bacteria under specific circumstances during their long-term infection in genetically diverse hosts. Our results suggest 34 H. pylori clinical strains have extensive genomic diversity. Core genes and strain-specific genes both play essential roles in H. pylori propagation and pathogenesis. Our microarray experiment may help select relatively significant genes for further research on the pathogenicity of H. pylori and development of a vaccine for H. pylori.

Cloning and Expression of Antifungal Protein (PR5) Genes from Hot Pepper (Capsicum annuum L.) (고추(Capsicum annuum)의 항균성 단백질(PR-5) 유전자의 클로닝과 발현 분석)

  • Park, Hae-Jin;Lee, Jung-Hoon;Yoon, Yong-Hwi;Kim, Hak-Yoon;Shin, Dong-Hyun;Lee, In-Jung;Kim, Dal-Ung;Kim, Kil-Ung
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • We have isolated and artificially expressed three cDNA clones of Capsicum annuum PR5 genes for elucidating the antifungal activity against Phytophthora capsici which contracted a hot pepper root rot in field condition. Three divergent PR5 proteins from hot pepper were designated as CAPR5-1 and CAPR5-2 from susceptible cultivar (Subicho) as well as CAPR5-3 from resistant cultivar (CM331) in response to P. capsici. The cDNA similarity was found over 80% of identity among the three CAPR5s, and deduced amino acid sequence was characterized that all of CAPR5s contained 16 cysteine residues which possibly had a significant role in the structural formation. The result of genomic DNA blot showed that CAPR5-1 and CAPR5-2 existed as single copy in the Subicho genome. Three recombinant CPARs in E. coli were identified by SDS-PACE, and each expressed protein was treated on the PDA medium which contained cultured pathogens. Although three CAPR5 proteins did not affected the hyphal growth of Glomerella glycines and Colletotrichum fagenarium, CAPR5-1, CAPR5-2, and CAPR5-3 showed a specific antifungal activities against P. capsici.

Spinosin Inhibits Aβ1-42 Production and Aggregation via Activating Nrf2/HO-1 Pathway

  • Zhang, Xiaoying;Wang, Jinyu;Gong, Guowei;Ma, Ruixin;Xu, Fanxing;Yan, Tingxu;Wu, Bo;Jia, Ying
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2020
  • The present research work primarily investigated whether spinosin has the potential of improving the pathogenesis of Alzheimer's disease (AD) driven by β-amyloid (Aβ) overproduction through impacting the procession of amyloid precursor protein (APP). Wild type mouse Neuro-2a cells (N2a/WT) and N2a stably expressing human APP695 (N2a/APP695) cells were treated with spinosin for 24 h. The levels of APP protein and secreted enzymes closely related to APP procession were examined by western blot analysis. Oxidative stress related proteins, such as nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were detected by immunofluorescence assay and western blot analysis, respectively. The intracellular reactive oxygen species (ROS) level was analyzed by flow cytometry, the levels of Aβ1-42 were determined by ELISA kit, and Thioflavin T (ThT) assay was used to detect the effect of spinosin on Aβ1-42 aggregation. The results showed that ROS induced the expression of ADAM10 and reduced the expression of BACE1, while spinosin inhibited ROS production by activating Nrf2 and up-regulating the expression of HO-1. Additionally, spinosin reduced Aβ1-42 production by impacting the procession of APP. In addition, spinosin inhibited the aggregation of Aβ1-42. In conclusion, spinosin reduced Aβ1-42 production by activating the Nrf2/HO-1 pathway in N2a/WT and N2a/APP695 cells. Therefore, spinosin is expected to be a promising treatment of AD.

Role of Sirtuin 1 in Depression and Associated Mechanisms (우울증에 관한 Sirtuin 1의 역할과 관련된 기전)

  • Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1120-1127
    • /
    • 2021
  • Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.

The Effects of Diesel Exhaust Particles on the Alveolar Macrophages for Inducible Nitric Oxide Synthase Induction and Nitric Oxide with Nitrotyrosilated-protein Formation (디젤분진이 폐포대식세포에서 nitric oxide의 생성과 inducible nitric oxide synthase의 발현 및 nitrotyrosilated-protein의 형성에 미치는 효과)

  • Lim Young;Choe Myung-Ok;Lee Kweon-Haeng;Kim Kyung-A;Kim Kil-Soo;Lee Myoung-Heon;Li Tian-Zhu;Lee Soo-Jin;Choe Nong-Hoon
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.192-198
    • /
    • 2006
  • Epidemiological studies have demonstrated an association between exposure to diesel exhaust particles (DEP) and adverse cardiopulmonary effects. Despite the epidemiological proof, the pathogenesis of DEP-related pulmonary diseases remain poorly understood. So, comprehensive in vivo and in vitro researches are required to know the effects of DEP on diverse lung diseases. Alveolar macrophages (AM) and airway epithelial cells are known as important cellular targets in DEP-induced lung diseases. Other studies have shown that nitric oxide (NO) is involved in particle matter induced lung injury. The present study was undertaken to determine whether DEP has an synergistic effects on lipopolysaccharide (LPS)-induced NO formation and inducible nitric oxide synthase (iNOS) with nitrotyrosilated-protein formation in cultured primary alveolar macrophages. The formation of NO was determined through the Griess reaction in the cultured medium and iNOS with nitrotyrosilated-proteins are analyzed by immunohistochemical staining and Western analysis. The results indicate that DEP exposure does not induce NO formation by itself, however DEP showed significant synergistic effects on LPS-induced NO formation. So, our results suggest that DEP inhalation could aggravate inflammatory lung disease through NO formation.

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato (애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가)

  • Chun, Hyun-Jin;Park, Hyeong-Cheol;Goo, Young-Min;Kim, Tae-Won;Cho, Kwang-Soo;Cho, Hyeon-Seol;Yun, Dae-Jin;Chung, Woo-Sik;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Pathophysiological Functions of Deubiquitinating Enzymes in Obesity and Related Metabolic Diseases (탈유비퀴틴화 효소 DUBs의 비만 및 대사 관련 질환에서 병태생리학적 기능)

  • Lee, Seul Gi;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.476-481
    • /
    • 2022
  • Ubiquitin signaling regulates virtually all aspects of eukaryotic biology and dynamic processes in which protein substrates are modified by ubiquitin. To regulate these processes, deubiquitinating enzymes (DUBs) cleave ubiquitin or ubiquitin-like proteins from these substrates. DUBs have been implicated in the pathogenesis of cancer, leading to the development of increasing numbers of small-molecule DUB inhibitors. On the other hand, recent studies have focused on the function of DUBs in metabolic diseases such as obesity, diabetes, and fatty liver diseases. DUBs play a positive or negative role in the progression and development of metabolic diseases. Their involvement in cell pathology and regulation of major transcription factors in metabolic syndrome has been examined in vitro and in animal and human biopsies. UCH, USP7, and USP19 were linked to adipocyte differentiation, body weight gain, and insulin resistance in genetic or diet-induced obesity. CYLD, USP4, and USP18 were found to be closely associated with fatty liver diseases. In addition, these liver diseases were accompanied by body weight change in certain cases. Collectively, in this review, we discuss the current understanding of DUBs in metabolic diseases with a particular focus on obesity. We also provide basic knowledge and regulatory mechanisms of DUBs and suggest these enzymes as therapeutic targets for metabolic diseases.

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung;Sang Eun Kim;Han Gyeol Go;Yun Ji Lee;Min Seok Park;Soyeon Ko;Beom Seok Han;Young-Chan Yoon;Ye Jin Cho;Pureunchowon Lee;Sang-Ho Lee;Kipyo Kim;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.599-610
    • /
    • 2023
  • According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.