• Title/Summary/Keyword: path search algorithm

Search Result 369, Processing Time 1.901 seconds

Applications to Recommend Moving Route by Schedule Using the Route Search System of Map API (지도 API의 경로 탐색 시스템을 활용한 일정 별 동선 추천 애플리케이션)

  • Ji-Woo Kim;Jung-Yi Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • The purpose of this study is to research and develop so that users who are gradually progressing in the popularization of smartphones and the calculation of agricultural quality can use more active and flexible applications than existing application fields. People use event management applications to remember what they need to do, and maps applications to get to their appointments on time. You will need to build a glue-delivered application that leverages the Maps API to be able to recommend the glove's path for events so that the user can use the application temporarily. By comparing and analyzing currently used calendar, map, and schedule applications, several Open Maps APIs were compared to supplement the weaknesses and develop applications that converge the strengths. The results of application development by applying the optimal algorithm for recommending traffic routes according to time and place for the schedule registered by the user are described.

Finding the One-to-One Optimum Path Considering User's Route Perception Characteristics of Origin and Destination (Focused on the Origin-Based Formulation and Algorithm) (출발지와 도착지의 경로인지특성을 반영한 One-to-One 최적경로탐색 (출발지기반 수식 및 알고리즘을 중심으로))

  • Shin, Seong-Il;Sohn, Kee-Min;Cho, Chong-Suk;Cho, Tcheol-Woong;Kim, Won-Keun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.99-110
    • /
    • 2005
  • Total travel cost of route which connects origin with destination (O-D) is consist of the total sum of link travel cost and route perception cost. If the link perception cost is different according to the origin and destination, optimal route search has limitation to reflect the actual condition by route enumeration problem. The purpose of this study is to propose optimal route searching formulation and algorithm which is enable to reflect different link perception cost by each route, not only avoid the enumeration problem between origin and destination. This method defines minimum unit of route as a link and finally compares routes using link unit costs. The proposed method considers the perception travel cost at both origin and destination in optimal route searching process, while conventional models refect the perception cost only at origin. However this two-way searching algorithm is still not able to guarantee optimum solution. To overcome this problem, this study proposed an orign based optimal route searching method which was developed based on destination based optimal perception route tree. This study investigates whether proposed numerical formulas and algorithms are able to reflect route perception behavior reflected the feature of origin and destination in a real traffic network by the example research including the diversity of route information for the surrounding area and the perception cost for the road hierarchy.

Fast algorithm for incorporating start and goal points into the map represented in a generalized visibility graph (출발점과 목표점을 일반화 가시성그래프로 표현된 맵에 포함하기 위한 빠른 알고리즘)

  • Yu, Kyeon-Ah;Jeon, Hyun-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2006
  • The visibility graph is a well-known method for efficient path-finding with the minimum search space modelling the game world. The generalized visibility graph is constructed on the expanded obstacle boundaries to eliminate the "wall-hugging" problem which is a major disadvantage of using the visibility graph. The paths generated by the generalized visibility graph are guaranteed to be near optimal and natural-looking. In this paper we propose the method to apply the generalized visibility graph efficiently for game characters who moves among static obstacles between varying start and goal points. Even though the space is minimal once the generalized visibility graph is constructed, the construction itself is time-consuming in checking the intersection between every two links connecting nodes. The idea is that we build the map for static obstacles first and then incorporate start and goal nodes quickly. The incorporation of start and goal nodes is the part that must be executed repeatedly. Therefore we propose to use the rotational plane-sweep algorithm in the computational geometry for incorporating start and goal nodes efficiently. The simulation result shows that the execution time has been improved by 39%-68% according to running times in the game environment with multiple static obstacles.

  • PDF

Interactive Realtime Facial Animation with Motion Data (모션 데이터를 사용한 대화식 실시간 얼굴 애니메이션)

  • 김성호
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.569-578
    • /
    • 2003
  • This paper presents a method in which the user produces a real-time facial animation by navigating in the space of facial expressions created from a great number of captured facial expressions. The core of the method is define the distance between each facial expressions and how to distribute into suitable intuitive space using it and user interface to generate realtime facial expression animation in this space. We created the search space from about 2,400 raptured facial expression frames. And, when the user free travels through the space, facial expressions located on the path are displayed in sequence. To visually distribute about 2,400 captured racial expressions in the space, we need to calculate distance between each frames. And we use Floyd's algorithm to get all-pairs shortest path between each frames, then get the manifold distance using it. The distribution of frames in intuitive space apply a multi-dimensional scaling using manifold distance of facial expression frames, and distributed in 2D space. We distributed into intuitive space with keep distance between facial expression frames in the original form. So, The method presented at this paper has large advantage that free navigate and not limited into intuitive space to generate facial expression animation because of always existing the facial expression frames to navigate by user. Also, It is very efficient that confirm and regenerate nth realtime generation using user interface easy to use for facial expression animation user want.

  • PDF

Detection Model of Malicious Nodes of Tactical Network for Korean-NCW Environment (한국형 NCW를 위한 전술네트워크에서의 악의적인 노드 검출 모델)

  • Yang, Ho-Kyung;Cha, Hyun-Jong;Shin, Hyo-Young;Ryou, Hwang-Bin;Jo, Yong-Gun
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • NCW(Network Centric- Warfare) encompasses the concept to use computer data processing and network linkage communications techniques, share information and furthermore, enhance the effectiveness of computer-operating systems. As IT(Information & Technology) have become developed in the recent years, the existing warfare system-centered conventional protocol is not use any longer. Instead, network-based NCW is being widely-available, today. Under this changing computer environment, it becomes important to establish algorithm and build the stable communication systems. Tools to identify malign node factors through Wireless Ad-hoc network cause a tremendous error to analyze and use paths of even benign node factors misreported to prove false without testing or indentifying such factors to an adequate level. These things can become an obstacle in the process of creating the optimum network distribution environment. In this regard, this thesis is designed to test and identify paths of benign node factors and then, present techniques to transmit data through the most significant open short path, with the tool of MP-SAR Protocol, security path search provider, in Ad-hoc NCW environment. Such techniques functions to identify and test unnecessary paths of node factors, and thus, such technique users can give an easy access to benign paths of node factors.

Development of Simulation Technology Based on 3D Indoor Map for Analyzing Pedestrian Convenience (보행 편의성 분석을 위한 3차원 실내지도 기반의 시뮬레이션 기술 개발)

  • KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.67-79
    • /
    • 2017
  • Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.