• Title/Summary/Keyword: path search algorithm

Search Result 369, Processing Time 0.033 seconds

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Optimal Moving Pattern Mining using Frequency of Sequence and Weights (시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사)

  • Lee, Yon-Sik;Park, Sung-Sook
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.79-93
    • /
    • 2009
  • For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.

  • PDF

The Rearch of Stress Route for Concrete Structure using Advanced Progressive Optimization (개선된 점진적 구조 최적화 기법을 이용한 콘크리트 구조물의 응력경로 탐색)

  • Kim, Shi-Hwan;Yoon, Seong-Soo;Park, Jin-Seon;Jeon, Jeong-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.153-163
    • /
    • 2011
  • This research describe improved algorithm that is able to decide terminal criterion of Evolutionary Structural Optimization (ESO), reducing load of calculation to search load path of concrete beam, and apply to agricultural facilities. The ESO method is that make to discrete structure, structural analyze each element stress through FEM. And repeat generation with next material condition to become for most suitable composing. Individual element introduces concept of zero stiffness, but zero stiffness decisions are gone to direction of exclusion. In this stduy, improve algorithm to be convergence by 'Rule of Alive or Die' in arrival because is most suitable. Also, existing terminal criterion lack consistency because that used depend on experience of researcher. This research procedure is fellowed. First, all modulus of elasticity assume a half of elasticity modulus of material, Second, structural analysis by FEM, Third, apply to the remove ratio and restoration ratio for the 'rule of alive or die'. Forth, reconstruct the element and material conditions. And repeat the first to forth process. The terminal time of evolutional procedure is the all elastic modulus of element changed to blank value or elasticity modulus value of original. Therefore, in this study, consist the algorithm for programming, and apply to the agricultural facilities with concrete.

Path Planning of Autonomous Guided Vehicle Using fuzzy Control & Genetic Algorithm (유전자 알고리즘과 퍼지 제어를 적용한 자율운송장치의 경로 계획)

  • Kim, Yong-Gug;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.397-406
    • /
    • 2000
  • Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.

  • PDF

Measure of Effectiveness Analysis for Tracking in SONAR System (소나시스템에서의 추적효과도 분석)

  • Cho, Jung-Hong;Kim, Hyoung Rok;Kim, Seongil;Kim, Jea Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.5-26
    • /
    • 2013
  • Since the optimized use of sonar systems for target tracking is a practical problem for naval operations, the measure of mission achievability is needed for preparing efficient sonar-maneuver tactic. In order to quantify the mission achievability or Measure Of Effectiveness(MOE) for given sonar-maneuver tactics, we developed and tested a simulation algorithm. The proposed algorithm for tracking is based on Measure Of Performance(MOP) for localization and tracking system of sonar against target. Probability of Detection(PD) using steering beam patterns referenced to the aspect angle of sonar is presented to consider the tracking-performance of sonar. Also, the integrated software package, named as Optimal Acoustic Search Path Planning(OASPP) is used for generating sonar-maneuver patterns and vulnerability analysis for a given scenario. Through simulation of a simple case for which the intuitive solution is known, the proposed algorithm is verified.

Plate Forming Automation System of Steel Plates by Line Heating Method(I) (선상가열법에 의한 강판의 곡가공 자동화 시스템(I))

  • Joo-Sung Lee;Sang-Il Kim;Seok-Jin Oh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.139-146
    • /
    • 1994
  • In this paper a feasible way toward the automation for plate forming by line heating method is proposed. For this a mechanical model representing the line heating phenomenon is adopted and a reasonable algorithm is introduced to search the heating path under the given heating conditions, which can produce the surface very similar to the given surface. A computer program system has been developed according to the proposed algorithm here. It has been applied to two curved shapes to show its validity. From the results it has been found that the proposed algorithm and the developed computer program system give a good result and can be a possible way getting to the automation system of plate forming by the line heating method.

  • PDF

A SPEC-T Viterbi decoder implementation with reduced-comparison operation (비교 연산을 개선한 SPEC-T 비터비 복호기의 구현)

  • Bang, Seung-Hwa;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-89
    • /
    • 2007
  • The Viterbi decoder, which employs the maximum likelihood decoding method, is a critical component in forward error correction for digital communication system. However, lowering power consumption on the Viterbi decoder is a difficult task since the number of paths calculated equals the number of distinctive states of the decoder and the Viterbi decoder utilizes trace-back method. In this paper, we propose a method which minimizes the number of operations performed on the comparator, deployed in the SPEC-T Viterbi decoder implementation. The proposed comparator was applied to the ACSU(Add-Compare-Select Unit) and MPMSU(Minimum Path Metric Search Unit) modules on the decoder. The proposed ACS scheme and MPMS scheme shows reduced power consumption by 10.7% and 11.5% each, compared to the conventional schemes. When compared to the SPEC-T schemes, the proposed ACS and MPMS schemes show 6% and 1.5% less power consumption. In both of the above experiments, the threshold value of 26 was applied.

Design and Implementation of a Web-based Public Transportation Guidance System (웹기반 대중교통 안내시스템 설계 및 구현)

  • Bae, Su-Gang;Lee, Seung-Ryong;Choe, Dae-Sun;Jeong, Tae-Chung;Seung, Hyeon-U
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.4
    • /
    • pp.426-439
    • /
    • 1999
  • 본 논문에서는 웹(World Wide Web)에서 사용자가 손쉽고 편리하게 이용할 수 있는 멀티미디어 대중교통 안내시스템 개발 경험을 소개한다. 개발된 시스템은 클라이언트와 서버 시스템, 경로탐색 시스템, 교통정보 저장 시스템, 노선 및 정류장 관리 시스템으로 구성되어 있다. 클라이언트에서 작동되는 사용자 인터페이스는 직관적으로 이해가 쉽고, 사용이 편리하며 인터액티브한 멀티미디어 대중 교통안내 서비스를 제공한다. 서버 시스템은 교통정보 수집 시스템으로부터 입력되는 데이타와, 경로탐색 시스템, 교통정보 저장 시스템과 연동되어 클라이언트의 요구사항을 처리하고 그 결과를 사용자에게 돌려준다. 수정된 A* 알고리즘을 이용하는 경로탐색 시스템은 최적경로를 탐색하며, 교통정보 저장 시스템은 현재 교통상황, 정류장, 노선, 지도 등의 정보를 저장한다. 노선 및 정류장 관리시스템은 시스템 관리자가 노선 또는 정류장 관리를 서버 화면의 지도상에서 효율적으로 수행할 수 있는 도구이다. 본 논문에서 다루는 대중교통 안내시스템은 Java로 구현하였기 때문에 확장과 이식이 용이하며, 시스템 유지보수 비용이 적게 드는 장점을 가지고 있다. 그리고, 웹 브라우저가 동작되는 환경에서는 어디서나 쉽게 접근이 가능하며 향후 구축될 Intelligent Transportation Systems(ITS)의 한 모듈로써 바로 작동될 수 있을 뿐만 아니라, 현재 인터넷상에서 제공되는 다양한 서비스와도 연동이 가능하다.Abstract This paper introduces our experience for developing a public transportation guidance system, which facilitates the World-Wide Web(WWW) to provide users with easier access and use. The proposed system is composed of four subsystems: client/server system, path search system, traffic data storage system, and traffic raw-data management system. The user interface in clients utilizes Java to furnish users with multimedia data accessibility and interactivity. The server processes clients' requests based on the traffic data coming from remote sensing devices and interacts with the path search system and traffic data storage system to provide users with the results. The path search system, which uses a modified A* algorithm, produces optimal solutions based on dynamic traffic data. The traffic data storage system stores the current traffic information together with the geographical information about the b$us_way routes. The traffic raw-data management system is a graphical user interface which enables the system manager to handle the traffic information easily on the map in the terminal screen. The system has considerable benefits such as portability, scalability, and flexibility since it is implemented using Java. Also, it can be extended to an integrated Intelligent Transportation Systems(ITS) which includes a variety of information on the Internet as well as traffic information.n.

Optimal Traffic Information (최적교통정보)

  • Hong, You-Sik;Park, Jong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.76-84
    • /
    • 2003
  • Now days, It is based on GIS and GPS, it can search for the shortest path and estimation of arrival time by using the internet and cell phone to driver. But, even though good car navigation system does not create which is the shortest path when there average vehicle speed is 10 -20 Km. Therefore In order to reduce vehicle waiting time and average vehicle speed, we suggest optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection length and lane. In this paper, it will be able to forecast the optimal traffic information, estimation of destination arrival time, under construction road, and dangerous road using internet.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.