• Title/Summary/Keyword: path search algorithm

Search Result 369, Processing Time 0.037 seconds

Optimal Path Search Algorithm for Urban Applying Received Signal Strength on Satellite Communication Environment (위성통신 환경에서 전파수신감도를 활용한 도심지 최적경로탐색 알고리즘)

  • Park, No-Uk;Kim, Joo-Seok;Lim, Joo-Yoeng;Lim, Tae-Hyuk;Yoo, Chang-Hyun;Kwon, Kun-Sup;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.189-197
    • /
    • 2012
  • In this paper, we propose an optimal path search algorithm that applies the received signal strength between a mobile device and a satellite. Because the common path search algorithm is only based on the shortest path search, it is difficult to provide stable multimedia services for the satellite mobile devices. The proposed algorithm provides the stable communication environment for the satellite mobile devices based on received signal strength. In Satellite communications, changes in the radio quality are severe depending on the receiving environment. Therefore, an accurate analysis of the receiving environment characteristics is very important for providing stable multimedia services of satellite communications. The causes of radio attenuation are atmosphere attenuation, vegetation attenuation and buildings attenuation. These factors were applied to analyze the received signal strength. The proposed algorithm can search the optimal path in urban for stable satellite multimedia services.

An optimal and genetic route search algorithm for intelligent route guidance system (지능형 주행 안내 시스템을 위한 유전 알고리즘에 근거한 최적 경로 탐색 알고리즘)

  • Choe, Gyoo-Seok;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.156-161
    • /
    • 1997
  • In this thesis, based on Genetic Algorithm, a new route search algorithm is presented to search an optimal route between the origin and the destination in intelligent route guidance systems in order to minimize the route traveling time. The proposed algorithm is effectively employed to complex road networks which have diverse turn constrains, time-delay constraints due to cross signals, and stochastic traffic volume. The algorithm is also shown to significantly promote search efficiency by changing the population size of path individuals that exist in each generation through the concept of age and lifetime to each path individual. A virtual road-traffic network with various turn constraints and traffic volume is simulated, where the suggested algorithm promptly produces not only an optimal route to minimize the route cost but also the estimated travel time for any pair of the origin and the destination, while effectively avoiding turn constraints and traffic jam.

  • PDF

A Simplified Method to Estimate Travel Cost based on Traffic-Adaptable Heuristics for Accelerating Path Search

  • Kim, Jin-Deog
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • In the telematics system, a reasonable path search time should be guaranteed from a great number of user's queries, even though the optimal path with minimized travel time might be continuously changed by the traffic flows. Thus, the path search method should consider traffic flows of the roads and the search time as well. However, the existing path search methods are not able to cope efficiently with the change of the traffic flows and to search rapidly paths simultaneously. This paper proposes a new path search method for fast computation. It also reflects the traffic flows efficiently. Especially, in order to simplify the computation of variable heuristic values, it employs a simplification method for estimating values of traffic-adaptable heuristics. The experiments are carried out with the $A^*$ algorithm and the proposed method in terms of the execution time, the number of node accesses and the accuracy. The results obtained from the experiments show that the method achieves very fast execution time and the reasonable accuracy as well.

A Study on A* Algorithm Applying Reversed Direction Method for High Accuracy of the Shortest Path Searching (A* 알고리즘의 최단경로 탐색 정확도 향상을 위한 역방향 적용방법에 관한 연구)

  • Ryu, Yeong-Geun;Park, Yongjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • The studies on the shortest path algorithms based on Dijkstra algorithm has been done continuously to decrease the time for searching. $A^*$ algorithm is the most represented one. Although fast searching speed is the major point of $A^*$ algorithm, there are high rates of failing in search of the shortest path, because of complex and irregular networks. The failure of the search means that it either did not find the target node, or found the shortest path, witch is not true. This study proposed $A^*$ algorithm applying method that can reduce searching failure rates, preferentially organizing the relations between the starting node and the targeting node, and appling it in reverse according to the organized path. This proposed method may not build exactly the shortest path, but the entire failure in search of th path would not occur. Following the developed algorithm tested in a real complex networks, it revealed that this algorithm increases the amount of time than the usual $A^*$ algorithm, but the accuracy rates of the shortest paths built is very high.

A Point-to-Point Shortest Path Search Algorithm in an Undirected Graph Using Minimum Spanning Tree (최소신장트리를 이용한 무방향 그래프의 점대점 최단경로 탐색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.103-111
    • /
    • 2014
  • This paper proposes a modified algorithm that improves on Dijkstra's algorithm by applying it to purely two-way traffic paths, given that a road where bi-directional traffic is made possible shall be considered as an undirected graph. Dijkstra's algorithm is the most generally utilized form of shortest-path search mechanism in GPS navigation system. However, it requires a large amount of memory for execution for it selects the shortest path by calculating distance between the starting node and every other node in a given directed graph. Dijkstra's algorithm, therefore, may occasionally fail to provide real-time information on the shortest path. To rectify the aforementioned shortcomings of Dijkstra's algorithm, the proposed algorithm creates conditions favorable to the undirected graph. It firstly selects the shortest path from all path vertices except for the starting and destination vertices. It later chooses all vertex-outgoing edges that coincide with the shortest path setting edges so as to simultaneously explore various vertices. When tested on 9 different undirected graphs, the proposed algorithm has not only successfully found the shortest path in all, but did so by reducing the time by 60% and requiring less memory.

Mobile Agent Based Route Search Method Using Genetic Algorithm (유전 알고리즘을 이용한 이동 에이전트 기반의 경로 탐색 기법)

  • Ji, Hong-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2037-2043
    • /
    • 2015
  • Proposed algorithm in this thesis introduced cells, units of router group, to conduct distributed processing of previous genetic algorithm. This thesis presented ways to reduce search delay time of overall network through cell-based genetic algorithm. Also, through this experiment, in case of a network was damaged in existing optimal path algorithm, Dijkstra algorithm, the proposed algorithm was designed to route an alternative path and also as it has a 2nd shortest path in cells of the damaged network so it is faster than Dijkstra algorithm, The study showed that the proposal algorithm can support routing of alternative path, if Dijkstra algorithm is damaged in a network.

A New Link-Based Single Tree Building Algorithm for Shortest Path Searching in an Urban Road Transportation Network

  • Suhng, Byung Munn;Lee, Wangheon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.889-898
    • /
    • 2013
  • The shortest-path searching algorithm must not only find a global solution to the destination, but also solve a turn penalty problem (TPP) in an urban road transportation network (URTN). Although the Dijkstra algorithm (DA) as a representative node-based algorithm secures a global solution to the shortest path search (SPS) in the URTN by visiting all the possible paths to the destination, the DA does not solve the TPP and the slow execution speed problem (SEP) because it must search for the temporary minimum cost node. Potts and Oliver solved the TPP by modifying the visiting unit from a node to the link type of a tree-building algorithm like the DA. The Multi Tree Building Algorithm (MTBA), classified as a representative Link Based Algorithm (LBA), does not extricate the SEP because the MTBA must search many of the origin and destination links as well as the candidate links in order to find the SPS. In this paper, we propose a new Link-Based Single Tree Building Algorithm in order to reduce the SEP of the MTBA by applying the breaking rule to the LBA and also prove its usefulness by comparing the proposed with other algorithms such as the node-based DA and the link-based MTBA for the error rates and execution speeds.

A Study on Finding the K Shortest Paths for the Multimodal Public Transportation Network in the Seoul Metropolitan (수도권 복합 대중교통망의 복수 대안 경로 탐색 알고리즘 고찰)

  • Park, Jong-Hoon;Sohn, Moo-Sung;Oh, Suk-Mun;Min, Jae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.607-613
    • /
    • 2011
  • This paper reviews search methods of multiple reasonable paths to implement multimodal public transportation network of Seoul. Such a large scale multimodal public transportation network as Seoul, the computation time of path finding algorithm is a key and the result of path should reflect route choice behavior of public transportation passengers. Search method of alternative path is divided by removing path method and deviation path method. It analyzes previous researches based on the complexity of algorithm for large-scale network. Applying path finding algorithm in public transportation network, transfer and loop constraints must be included to be able to reflect real behavior. It constructs the generalized cost function based on the smart card data to reflect travel behavior of public transportation. To validate the availability of algorithm, experiments conducted with Seoul metropolitan public multimodal transportation network consisted with 22,109 nodes and 215,859 links by using the deviation path method, suitable for large-scale network.

  • PDF

A Design of Optimal Path Search Algorithm using Information of Orientation (방향성 정보를 이용한 최적 경로 탐색 알고리즘의 설계)

  • Kim Jin-Deog;Lee Hyun-Seop;Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.454-461
    • /
    • 2005
  • Car navigation system which is killer application fuses map management techniques into CPS techniques. Even if the existing navigation systems are designed for the shortest path, they are not able to cope efficiently with the change of the traffic flow and the bottleneck point of road. Therefore, it is necessary to find out shortest path algorithm based on time instead of distance which takes traffic information into consideration. In this paper, we propose a optimal path search algorithm based on the traffic information. More precisely. we introduce the system architecture for finding out optimal paths, and the limitations of the existing shortest path search algorithm are also analyzed. And then, we propose a new algorithm for finding out optimal path to make good use of the orientation of the collected traffic information.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.