• Title/Summary/Keyword: path search algorithm

Search Result 369, Processing Time 0.028 seconds

Terminal-pair reliability using flow augmenting path search algorithm

  • Choi, Moon-Soo;Jun, Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.136-145
    • /
    • 1993
  • This paper considers a reliability problem as a special type of flow problem and presents an algorithm to evaluate the exact 2-terminal reliability of networks by using a backtracking technique. It employs a polygon-to-chain reduction in addition to series and parallel reduction techniques to reduce execution time. In comparisons, it presents a much better performance than other algorithms known to us. We also propose a methodology to apply the algorithm for approximation of the system reliability.

  • PDF

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

Development of a Navigation Control Algorithm for Mobile Robots Using D* Search and Fuzzy Algorithm (D* 서치와 퍼지 알고리즘을 이용한 모바일 로봇의 충돌회피 주행제어 알고리즘 설계)

  • Jung, Yun-Ha;Park, Hyo-Woon;Lee, Sang-Jin;Won, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, we present a navigation control algorithm for mobile robots that move in environments having static and moving obstacles. The algorithm includes a global and a local path-planning algorithm that uses $D^*$ search algorithm, a fuzzy logic for determining the immediate level of danger due to collision, and a fuzzy logic for evaluating the required wheel velocities of the mobile robot. To apply the $D^*$ search algorithm, the two-dimensional space that the robot moves in is decomposed into small rectangular cells. The algorithm is verified by performing simulations using the Python programming language as well as by using the dynamic equations for a two-wheeled mobile robot. The simulation results show that the algorithm can be used to move the robot successfully to reach the goal position, while avoiding moving and unknown static obstacles.

Development of the Algorithm of a Public Transportation Route Search Considering the Resistance Value of Traffic Safety and Environmental Index (교통안전, 환경지표의 저항값을 고려한 대중교통 경로 탐색 알고리즘 개발)

  • Kim, Eun-Ji;Lee, Seon-Ha;Cheon, Choon-Keun;Yu, Byung-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • This study derived the algorithm of a public transportation route search that adds safety and environmental costs according to user preference. As the means of an algorithm application and evaluation, Macro Simulation, VISUM was conducted for an analysis. The route using the subway, which is relatively low in safety and environment resistance value was preferred, and it was analyzed to select the safe and environmental route even though it detours. This study can be applicable when to verify the algorithm of route search considering safety and environment, and when introducing the algorithm of route search according to user preference in the smart-phone application in the future, it can provide users with very useful information by choosing a route as for safety and environment, and through this, the quality of user-friendly information provision can be promoted.

Difficulty Evaluation of Game Levels using A Path-Finding Algorithm (경로 탐색 알고리즘을 이용한 게임 레벨 난이도 평가)

  • Chun, Youngjae;Oh, Kyoungsu
    • Journal of Korea Game Society
    • /
    • v.15 no.4
    • /
    • pp.157-168
    • /
    • 2015
  • The difficulty of the game is closely related to the fun of the game. However, it is not easy to determine the appropriate level of difficulty of the game. In most cases, human playtesting is required. But even so, it is still hard to quantitatively evaluate difficulty of the game. Thus, if we perform quantitative evaluation of the difficulty automatically it will be very helpful in game developments. In this paper, we use a path finding algorithm to evaluate difficulty of exploration in a game level. Exploration is a basic attribute in common video games and it represents the overall difficulty of the game level. We also optimize the proposed evaluation algorithm by using previous exploration histories when available area in an game level is dynamically expanded and the new search is required.

A Border Line-Based Pruning Scheme for Shortest Path Computations

  • Park, Jin-Kyu;Moon, Dae-Jin;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.939-955
    • /
    • 2010
  • With the progress of IT and mobile positioning technologies, various types of location-based services (LBS) have been proposed and implemented. Finding a shortest path between two nodes is one of the most fundamental tasks in many LBS related applications. So far, there have been many research efforts on the shortest path finding problem. For instance, $A^*$ algorithm estimates neighboring nodes using a heuristic function and selects minimum cost node as the closest one to the destination. Pruning method, which is known to outperform the A* algorithm, improves its routing performance by avoiding unnecessary exploration in the search space. For pruning, shortest paths for all node pairs in a map need to be pre-computed, from which a shortest path container is generated for each edge. The container for an edge consists of all the destination nodes whose shortest path passes through the edge and possibly some unnecessary nodes. These containers are used during routing to prune unnecessary node visits. However, this method shows poor performance as the number of unnecessary nodes included in the container increases. In this paper, we focus on this problem and propose a new border line-based pruning scheme for path routing which can reduce the number of unnecessary node visits significantly. Through extensive experiments on randomly-generated, various complexity of maps, we empirically find out optimal number of border lines for clipping containers and compare its performance with other methods.

Search of Optimal Path and Implementation using Network based Reinforcement Learning Algorithm and sharing of System Information (네트워크기반의 강화학습 알고리즘과 시스템의 정보공유화를 이용한 최단경로의 검색 및 구현)

  • Min, Seong-Joon;Oh, Kyung-Seok;Ahn, June-Young;Heo, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.174-176
    • /
    • 2005
  • This treatise studies composing process that renew information mastered by interactive experience between environment and system via network among individuals. In the previous study map information regarding free space is learned by using of reinforced learning algorithm, which enable each individual to construct optimal action policy. Based on those action policy each individuals can obtain optimal path. Moreover decision process to distinguish best optimal path by comparing those in the network composed of each individuals is added. Also information about the finally chosen path is being updated. A self renewing method of each system information by sharing the each individual data via network is proposed Data enrichment by shilling the information of many maps not in the single map is tried Numerical simulation is conducted to confirm the propose concept. In order to prove its suitability experiment using micro-mouse by integrating and comparing the information between individuals is carried out in various types of map to reveal successful result.

  • PDF

Behavior Control Algorithm of Swarm Robots to Maintain Network Connectivity (네트워크 연결성 유지를 위한 군집 로봇의 행동 제어 알고리즘)

  • Kim, Jong Seon;Jeong, June Young;Ji, Sang Hoon;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1132-1137
    • /
    • 2013
  • In swarm robot systems, it is vital to maintain network connectivity to ensure cooperative behavior between robots. This paper deals with the behavior control algorithm of the swarm robots for maintaining network connectivity. To do this, we divide swarm robots into search-robots, base-robots, and relay-robots. Using these robots, we propose behavior control algorithm to maintain network connectivity. The behavior control algorithms to maintain network connectivity are proposed for the local path planning using virtual force and global path planning using the Delaunay triangulation, respectively. Finally, we demonstrate the effectiveness and applicability of the proposed method through some simulations.

Searching a Navigation Path to Avoid Danger Area for Safe Driving (안전운전을 위해 위험지역을 회피하는 내비게이션 경로탐색)

  • Lee, Yong-Hu;Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.171-179
    • /
    • 2013
  • The primary function of navigation system is to provide route search and road guidance for safe driving for drivers. However, the existing route search system provides a simple service that looks up the shortest route using a safe driving DB without considering different road characteristics for the safety of the drivers. In order to maintain the safe driving, rather than searching the shortest path, a navigation system, in which the danger areas and/or the dangerous time zones have been considered, is required. Therefore, in this paper we propose a strategy of searching a navigation path to avoid danger areas for safe driving by using the A* algorithm. In the strategy, when evaluating the path-specific fitness of the navigation nodes, different heuristic weights were assigned to different types of risk areas. In particular, we considered three kinds of danger areas, such as accident-prone sections where accidents occur frequently, school zones, and intersection regions, as well as the time slots when the probability of danger is high. From computer simulation, the results demonstrate that the proposed scheme can provide the way to avoid danger areas on the route searching and confirm the possibility of providing the actual service.

A Study on the Obstacle Avoidance Algorithm and Path Planning of Multiple Mobile Robot (다중이동로봇의 장애물 회피 논리 및 경로계획에 관한 연구)

  • Park, Kyung-Jin;Lee, Ki-Sung;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.633-635
    • /
    • 1999
  • In this paper, we propose a new method of path planning for multiple mobile robot in dynamic environment. To search the optimal path, multiple mobile robot is always generating path with static and dynamic obstacles avoidance from start point to goal point. The purpose of this paper is to design an optimal path for the mobile robot.

  • PDF