• 제목/요약/키워드: path search algorithm

Search Result 369, Processing Time 0.026 seconds

Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System (이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략)

  • CHO JUNG-HONG;KIM JUNG-HAE;KIM JEA-SOO;LIM JUN-SEOK;KIM SEONG-IL;KIM YOUNG-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.

Efficient Bidirectional Search Algorithm for Optimal Route (최적 경로를 보장하는 효율적인 양방향 탐색 알고리즘)

  • 황보택근
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.745-752
    • /
    • 2002
  • A* algorithm is widely used in optimal car route search which is a kind of informed search, since the locations of starting and ending points are known a priori. Unidirectional A* algorithm requires considerable search time but guarantees a optimal path, bidirectional A* algorithm does not guarantee a optimal path and takes even longer search time than unidirectional search to guarantee a optimal path. In this paper, a new bidirectional A* algorithm which requites less search time and guarantees a optimal path is proposed. To evaluate the efficiency of the proposed algorithm, several experiments are conducted in real road map and the results show that the algorithm is very effective in terms of finding a optimal path and search time.

  • PDF

Improved Route Search Method Through the Operation Process of the Genetic Algorithm (유전 알고리즘의 연산처리를 통한 개선된 경로 탐색 기법)

  • Ji, Hong-il;Seo, Chang-jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Proposal algorithm in this paper introduced cells, units of router group, for distributed processing of previous genetic algorithm. This paper presented ways to reduce search delay time of overall network through cell-based genetic algorithm. As a result of performance analysis comparing with existing genetic algorithm through experiments, the proposal algorithm was verified superior in terms of costs and delay time. Furthermore, time for routing an alternative path was reduced in proposal algorithm, in case that a network was damaged in existing optimal path algorithm, Dijkstra algorithm, and the proposal algorithm was designed to route an alternative path faster than Dijkstra algorithm, as it has a 2nd shortest path in cells of the damaged network. The study showed that the proposal algorithm can support routing of alternative path, if Dijkstra algorithm is damaged in a network.

Path Optimize Research used Ray-Tracing Algorithm in Heuristic-based Genetic Algorithm Pathfinding (휴리스틱 유전 알고리즘 경로 탐색에 광선 추적 알고리즘을 활용한 경로 최적화 연구)

  • Ko, Jung-Woon;Lee, Dong-Yeop
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.83-90
    • /
    • 2019
  • Heuristic based Genetic Algorithm Pathfinding(H-GAP), a method without the need for node and edge information, can compensate the disadvantages of existing pathfinding algorithm, and perform the path search at high speed. However, because the pathfinding by H-GAP is non-node-based, it may not be an optimal path when it includes unnecessary path information. In this paper, we propose an algorithm to optimize the search path using H-GAP. The proposed algorithm optimizes the path by removing unnecessary path information through ray-tracing algorithm after the H-GAP path search is completed.

Design and Implementation of a friendly maze program for early childhood based on a path searching algorithm

  • Yun, Unil;Yu, Eun Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.49-55
    • /
    • 2017
  • Robots, games and life applications have been developed while computer areas are developed. Moreover, various applications have been utilized for various users including the early childhood. Recently, smart phones have been dramatically used by various users including early childhood. Many applications need to find a path from a starting point to destinations. For example, without using real maps, users can find the direct paths for the destinations in realtime. Specifically, path exploration in game programs is so important to have accurate results. Nowadays, with these techniques, diverse applications for educations of early childhood have been developed. To deal with the functions, necessity of efficient path search programs with high accuracy becomes much higher. In this paper, we design and develop a friendly maze program for early childhood based on a path searching algorithm. Basically, the path of lineal distance from a starting location to destination is considered. Moreover, weight values are calculated by considering heuristic weighted h(x). In our approach, A* algorithm searches the path considering weight values. Moreover, we utilize depth first search approach instead of breadth first search in order to reduce the search space. so it is proper to use A* algorithm in finding efficient paths although it is not optimized paths.

A study on path planning and avoidance of obstacle for mobile robot by using genetic algorithm (유전알고리즘을 이용한 이동로봇의 경로계획 및 충돌회피에 관한 연구)

  • 김진수;이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1193-1196
    • /
    • 1996
  • Genetic algorithm(GA) is useful to find optimal solution without any special mathematical modeling. This study presents to search optimal path of Autonomous Mobile Robot(AMR) by using GA without encoding and decoding procedure. Therefore, this paper shows that the proposed algorithm using GA can reduce the computation time to search the optimal path.

  • PDF

Quadrotor path planning using A* search algorithm and minimum snap trajectory generation

  • Hong, Youkyung;Kim, Suseong;Kim, Yookyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1013-1023
    • /
    • 2021
  • In this study, we propose a practical path planning method that combines the A* search algorithm and minimum snap trajectory generation. The A* search algorithm determines a set of waypoints to avoid collisions with surrounding obstacles from a starting to a destination point. Only essential waypoints (waypoints necessary to generate smooth trajectories) are extracted from the waypoints determined by the A* search algorithm, and an appropriate time between two adjacent waypoints is allocated. The waypoints so determined are connected by a smooth minimum snap trajectory, a dynamically executable trajectory for the quadrotor. If the generated trajectory is invalid, we methodically determine when intermediate waypoints are needed and how to insert the points to modify the trajectory. We verified the performance of the proposed method by various simulation experiments and a real-world experiment in a forested outdoor environment.

Faster pipe auto-routing using improved jump point search

  • Min, Jwa-Geun;Ruy, Won-Sun;Park, Chul Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.596-604
    • /
    • 2020
  • Previous studies on pipe auto-routing algorithms generally used such algorithms as A*, Dijkstra, Genetic Algorithm, Particle Swarm Optimization, and Ant Colony Optimization, to satisfy the relevant constraints of its own field and improve the output quality. On the other hand, this study aimed to significantly improve path-finding speed by applying the Jump Point Search (JPS) algorithm, which requires lower search cost than the abovementioned algorithms, for pipe routing. The existing JPS, however, is limited to two-dimensional spaces and can only find the shortest path. Thus, it requires several improvements to be applied to pipe routing. Pipe routing is performed in a three-dimensional space, and the path of piping must be parallel to the axis to minimize its interference with other facilities. In addition, the number of elbows must be reduced to the maximum from an economic perspective, and preferred spaces in the path must also be included. The existing JPS was improved for the pipe routing problem such that it can consider the above-mentioned problem. The fast path-finding speed of the proposed algorithm was verified by comparing it with the conventional A* algorithm in terms of resolution.

A heuristic path planning method for robot working in an indoor environment (실내에서 작업하는 로봇의 휴리스틱 작업경로계획)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.907-914
    • /
    • 2014
  • A heuristic search algorithm is proposed to plan a collision free path for robots in an indoor environment. The proposed algorithm is to find a collision free path in the gridded configuration space by proposed heuristic graph search algorithm. The proposed algorithm largely consists of two parts : tunnel searching and path searching in the tunnel. The tunnel searching algorithm finds a thicker path from start grid to goal grid in grid configuration space. The tunnel is constructed with large grid defined as a connected several minimum size grids in grid-based configuration space. The path searching algorithm then searches a path in the tunnel with minimum grids. The computational time of the proposed algorithm is less than the other graph search algorithm and we analysis the time complexity. To show the validity of the proposed algorithm, some numerical examples are illustrated for robot.

Design and Implementation of Optimal Path Search Service Using GPS Information in Photo File (사진에 포함된 GPS정보를 이용한 최적화된 경로탐색 서비스 설계 및 구현)

  • Kim, Jun-Yeong;Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.199-207
    • /
    • 2012
  • In this paper, we designed and implemented path search system using GPS information in photo. The system extracts EXIF information included in a photo to get path information and performs path search by applying the shortest path algorithm with the use of GPS information out of information, which was extracted in this way. And then it shows the obtained path information on web by utilizing Yahoo Map API. For this, the system is designed using a method of extracting location information in a photo and path sorting through applying the shortest path algorithm. UI(User Interface) was implemented using Yahoo Map API. Based on that, we implemented path search service using photo file that is included GPS information.