• Title/Summary/Keyword: path collision

Search Result 344, Processing Time 0.035 seconds

Collision Avoidance for an Autonomous Mobile Robot Using Genetic Algorithms (유전 알고리즘을 이용한 자율 주행 로봇의 장애물 호피)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 1998
  • Navigation is a method to direct a mobile robot without collision when traversing the environment. This is to reach a destination without getting lost. In this paper, global and local path planning in fixed obstacle and moving obstacle using genetic algorithm are presented. First, mobile robot searches optimal global path using genetic algorithm without falling into local minima. Then if it finds a unknown obstacle, it searches new path without crashing obstacle. Also if there is a moving obstacle, mobile robot searches new optimal path without colliding with the obstacles. Various simulation results show the proposed algorithm can search a shortest path effectively.

  • PDF

Path Control Algorithm for AGV Using Right of Path Occupation (경로 점유권을 이용한 AGV의 경로 제어 알고리즘)

  • Joo, Young-Hoon;Kim, Jong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.592-598
    • /
    • 2008
  • This paper presents collision prediction and avoidance method for AGVS (Automatic Guide Vehicle System). Also, we propose the PO(Right of Path Occupying) with decentralized delay time for collision avoidance. Classified essential element of AGV's working environment is modeled in this paper. Using this model, we propose a new shortest path algorithm using A* search algorithm and obtain the information on AGVs travel time, coordinates and rotation vector. Finally, we use the AGVs information data as input for simulation program. The simulation practice is used in order to evaluate a collision prediction and avoidance, and it has been presented to demonstrate the applicability of the minimize delay time.

A minimum-time trajectory planning for dual robot system using running start (초기속도 부가에 의한 두 대의 로보트 시스템의 최소시간 경로계획)

  • 이지홍;문점생
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.423-427
    • /
    • 1993
  • A velocity planning method is proposed that ensures collision-free and minimal delay-time motions for two robotic manipulators and auxiliary equipments. Additional path, which makes robot start with possible largest speed, is added to the original prescribed path of one of two robots, and this running start along the additional path reduces delay time introduced to avoid collision between the robots and therefore reduces total traveling time.

  • PDF

Hybrid Path Planning of Multi-Robots for Path Deviation Prevention (군집로봇의 경로이탈 방지를 위한 하이브리드 경로계획 기법)

  • Wee, Sung-Gil;Kim, Yoon-Gu;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.416-422
    • /
    • 2013
  • This paper suggests a hybrid path planning method of multi-robots, where a path deviation prevention for maintaining a specific formation is implemented by using repulsive function, $A^*$ algorithm and UKF (Unscented Kalman Filter). The repulsive function in potential field method is used to avoid collision among robots and obstacles. $A^*$ algorithm helps the robots to find optimal path. In addition, error estimation based on UKF guarantees small path deviation of each robot during navigation. The simulation results show that the swarm robots with designated formation successfully avoid obstacles and return to the assigned formation effectively.

Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles (복수의 동적 장애물에 대한 이동로봇의 최적경로설계)

  • Kim, Dae-Gwang;Kang, Dong-Joong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

Path Planning for Autonomous Navigation of a Driverless Ground Vehicle Based on Waypoints (무인운전차량의 자율주행을 위한 경로점 기반 경로계획)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.211-217
    • /
    • 2014
  • This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.

Optimal Collision-Free Path Planning of Redundant Robotic Manipulators (여유 자유도를 갖는 Robot Manipulator 최적 충돌 회피 경로 계획에 관한 연구)

  • 장민근;기창두;기석호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.743-747
    • /
    • 1996
  • A Potential Field Method is applied to the proposed algorithm for the planning of collision-free paths of redundant manipulators. The planning is carried out on the base of kinematic configuration. To make repulsive potentials, sources are distributed on the boundaries of obstacles. To escape from local minimum of the main potential and to attack other difficulties of the planning, various potentials are defined simultaneously, Inverse Kinematics Problems of the redundant manipulators are solved by unconstrained optimization method. Computer simulation result of the path planning is presented.

  • PDF

Collision Avoidance Method for Autonomous Vehicle (자율형 무인운반차를 위한 충돌회피동작의 생성(I))

  • 임재국;이동형
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.33-44
    • /
    • 1999
  • This paper describes the Autonomous Vehicles (AV) which are operated for their own tasks. There are chances of conflict resolution such as sharing the same path which can lead to the risk of a collision. This research represents some ways of negotiating the conflict resolution by generating cooperative actions. Negotiation while traveling the path is accomplished by using priority and by announcing the start time of the task. When there is a risk of collision, the AV tries to dissolve the situation of conflict resolution by concurrently adjusting mutual speed and by performing the algorithm of passing. If the speed of the AV cannot be adjusted, it measures the distance between the counterpart of the AV and an obstacle along the path. Then it judges either to proceed by passing the counterpart of the AV or to turn back after observing the current circumstances. The performance of the algorithm described above was proven by a simulator.

  • PDF

Path planning on satellite images for unmanned surface vehicles

  • Yang, Joe-Ming;Tseng, Chien-Ming;Tseng, P.S.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-99
    • /
    • 2015
  • In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs) and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle $A^*$ algorithm ($FAA^*$), an advanced $A^*$ algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV.

On the collision avoidance of two manipulators

  • Lee, B.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.921-925
    • /
    • 1987
  • This paper presents the recent findings for collision avoidance of two manipulators in addition to the results shown in Lee [4]. The collision situation we assume here is that the prespecified final time $K_{f}$ and the prespecified path of one robot can be modified for the purpose of collision avoidance with the other robot. The collision avoidance problem is resolved into three independent categories for a systematic approach.h.

  • PDF