• Title/Summary/Keyword: pasternak elastic foundations

Search Result 92, Processing Time 0.022 seconds

Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations

  • Refrafi, Salah;Bousahla, Abdelmoumen Anis;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.311-325
    • /
    • 2020
  • In this research work, the hygrothermal and mechanical buckling responses of simply supported FG sandwich plate seated on Winkler-Pasternak elastic foundation are investigated using a novel shear deformation theory. The current model take into consideration the shear deformation effects and ensures the zero shear stresses on the free surfaces of the FG-sandwich plate without requiring the correction factors "Ks". The material properties of the faces sheets of the FG-sandwich plate are assumed varies as power law function "P-FGM" and the core is isotropic (purely ceramic). From the virtual work principle, the stability equations are deduced and resolved via Navier model. The hygrothermal effects are considered varies as a nonlinear, linear and uniform distribution across the thickness of the FG-sandwich plate. To check and confirm the accuracy of the current model, a several comparison has been made with other models found in the literature. The effects the temperature, moisture concentration, parameters of elastic foundation, side-to-thickness ratio, aspect ratio and the inhomogeneity parameter on the critical buckling of FG sandwich plates are also investigated.

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

  • Bounouara, Fatima;Benrahou, Kouider Halim;Belkorissat, Ismahene;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.227-249
    • /
    • 2016
  • The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube

  • Wu, Chih-Ping;Chen, Yan-Hong;Hong, Zong-Li;Lin, Chia-Hao
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.163-182
    • /
    • 2018
  • Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.