• Title/Summary/Keyword: paste-fill

Search Result 44, Processing Time 0.025 seconds

Analysis of Contact Properties by Varying the Firing Condition of AgAl Electrode for n-type Crystalline Silicon Solar Cell (AgAl 전극 고온 소성 조건 가변에 따른 N-형 결정질 실리콘 태양전지의 접촉 특성 분석)

  • Oh, Dong-Hyun;Chung, Sung-Youn;Jeon, Min-Han;Kang, Ji-Woon;Shim, Gyeong-Bae;Park, Cheol-Min;Kim, Hyun-Hoo;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.461-465
    • /
    • 2016
  • n-type silicon shows the better tolerance towards metal impurities with a higher minority carrier lifetime compared to p-type silicon substrate. Due to better lifetime stability as compared to p-type during illumination made the photovoltaic community to switch toward n-type wafers for high efficiency silicon solar cells. We fabricated the front electrode of the n-type solar cell with AgAl paste. The electrodes characteristics of the AgAl paste depend on the contact junction depth that is closely related to the firing temperature. Metal contact depth with p+ emitter, with optimized depth is important as it influence the resistance. In this study, we optimize the firing condition for the effective formation of the metal depth by varying the firing condition. The firing was carried out at temperatures below $670^{\circ}C$ with low contact depth and high contact resistance. It was noted that the contact resistance was reduced with the increase of firing temperature. The contact resistance of $5.99m{\Omega}cm^2$ was shown for the optimum firing temperature of $865^{\circ}C$. Over $900^{\circ}C$, contact junction is bonded to the Si through the emitter, resulting the contact resistance to shunt. we obtained photovoltaic parameter such as fill factor of 76.68%, short-circuit current of $40.2mA/cm^2$, open-circuit voltage of 620 mV and convert efficiency of 19.11%.

Quality Characteristics of Aerobic Packed Pork during Storage after Fermentation with Soy Sauce, Red Pepper and Soybean Paste Seasonings (간장, 고추장 및 된장 양념으로 발효시킨 함기포장 돈육의 저장기간 동안 품질 특성)

  • Jin, S.K.;Kim, I.S.;Hah, K.H.;Lyou, H.J.;Park, K.H.;Lee, J.R.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.679-690
    • /
    • 2005
  • This study was carried out to evaluate the quality characteristics of aerobic packed pork during storage after fermentation with soy sauce, red pepper and soybean paste seasonings. The ham of pork were cut to cube($7{\time}10{\time}2$cm) and Korea traditional seasonings such as soy sauce(T1), red pepper paste(T2), soybean paste(T3) were seasoned by the proportions of meat to seasonings(1:1), respectively. The seasoned sample were fermented by fill into plastic box at $1{\pm}1^{\circ}C$ for 10 days. And then, the fermented meat from each pack was aerobic packed and stored at $1{\pm}1^{\circ}C$ for up to 28 days. The pH of T1 were significantly(P<0.05) lower compared to T2 and T3 at 1 day of storage, but were significantly(P<0.05) higher at 14 and 28 days of storage. The water-holding capacity of T1were significantly(P<0.05) higher compared to T2 and T3 at 1 and 28 days of storage. The shear force of T3 were significantly(P<0.05) lower compared to T1 during storage. The surface meat L* values of T3 were significantly(P<0.05) higher than those of T1 and T2, but a* and b* values of T2 were significantly(P<0.05) higher. The volatile basic nitrogen(VBN) of T3 were significantly(P<0.05) lower compared to T2 at 1 and 14 days of storage, but T1 were significantly(P<0.05) lower at 28 days of storage. The thiobarbituric acid reactive substances(TBARS) of T3 were significantly(P<0.05) lower compared to T1 and T2. The total plate counts of T1 were significantly(P<0.05) lower compared to T2 and T3 at 1 day of storage, but T2 were significantly(P<0.05) lower at 14 and 28 days of storage. The Escherichia coli of T1 and T3 were significantly(P<0.05) lower compared to T2 at 1 day of storage. The Lactobacilli spp. of T2 were significantly(P<0.05) lower compared to T1 and T3.

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

Electrochemical Properties of Photoelectrode using NiO-$TiO_2$ (NiO-$TiO_2$ 광전극을 이용한 염료감응형태양전지의 전기화학적 특성)

  • Park, Kyunghee;Jin, Enmei;Zhao, Xingguan;Park, Areum;Jiao, Wang;Gu, Halbon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • 염료감응형 태양전지에서 가능한 광전자의 이동경로에 대해 살펴보면 빛 에너지를 흡수한 루테늄계 염료는 기저상태에서 여기상태로 전이한 후 광전자의 반도체 전도띠로 전자주입이 이루어진다. 이러한 전자 중 일부는 반도체산화물의 트랩으로의 전이와 트랩에서 염료 기저상태로의 전이가 일어나고 일부 전자는 전해질의 이온종 또는 산화된 염료와 재결합하는 현상이 일어난다. 본 연구에서는 이러한 전자의 재결합을 막고자 p형 반도체인 NiO paste를 제작하여 $TiO_2$ 광전극 층 위에 코팅하였다. 코팅된 NiO 층은 홀수용체로서 염료에 전자를 제공해 주는 역할과 동시에 $TiO_2$ 가전도대로 이동되었던 전자들이 염료의 기저상태의 홀이나 전해질로의 전자 유입이 이루어지는 전자의 재결합을 막는 방벽의 역할을 동시에 하게 된다. 제작된 염료감응형 태양전지 셀의 에너지 변환효율 특성을 알아보기 위하여 1000 W Xe Arc Lamp와 Air Mass 1.5, filter가 장착된 Thermo-Preal (USA) Solar simulator system을 사용하여 개방전압 (Voc), 광전류 (Isc), fill factor (FF), 에너지변환 효율 (${\eta}$)을 조사하였으며 광학현미경을 통해 염료의 흡착 정도를 비교해 보았다. NiO의 코팅 두께나 NiO 나노입자 크기에 따라 염료감응형태양전지에서 에너지변환효율에 미치는 영향을 조사하였다. NiO가 코팅되지 않은 $TiO_2$ 광전극과 비교해 볼 때 NiO 코팅시 Voc와 Isc의 증가로 인해 에너지변환효율이 20% 이상 향상되는 것을 볼 수 있었다.

  • PDF

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.