• Title/Summary/Keyword: paste materials

Search Result 762, Processing Time 0.023 seconds

Heating Characteristics of Planar Heater Fabricated with Different Mixing Ratios of MXene-CNT-WPU Composites (MXene-CNT-WPU 복합소재 기반 면상발열체의 배합 비율에 따른 발열 특성)

  • Hyo-Jun, Oh;Quy-Dat, Nguyen;Yoonsik, Yi;Choon-Gi, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.278-284
    • /
    • 2022
  • This study presents an excellent planar heater based on low-dimensional composites. By optimizing the ratio of 1D carbon nanotubes (CNT) and 2D MXene (Ti3C2TX), it is possible to create a planar heater that has superior electrical conductivity and high heat generation characteristics. Low-dimensional composites were prepared by mixing CNT paste and MXene solution with eco-friendly waterborne polyurethane (WPU). In order to find the optimal mixing ratio for the MXene-CNT-WPU composites, samples with MXene to CNT weight ratios of 3:1, 1:1, 1:3, 1:7, and 1:14 were investigated. In addition to these different weight ratios, 5 wt% WPU was equally applied to each sample. It was confirmed that the higher the weight ratio of CNT, the lower the sheet resistance and the higher the heating temperature. In particular, when the MXene-CNT-WPU planar heater was fabricated by mixing MXene and CNT at a weight ratio of 1:7 and 1:14, the heating temperature was higher than the heating temperature of a CNT-WPU planar heater. These characteristics are due to the optimized mixture of the 1D materials (CNT) and the 2D materials (MXene) causing the formation of a flat surface and a dense network structure. The low-dimensional composites manufactured with the optimized mixing ratios found in this study are expected to be applied in flexible electronic devices.

Calcium-doped zinc oxide nanocrystals as an innovative intracanal medicament: a pilot study

  • Gabriela Leite de Souza;Thamara Eduarda Alves Magalhaes;Gabrielle Alves Nunes Freitas;Nelly Xiomara Alvarado Lemus;Gabriella Lopes de Rezende Barbosa;Anielle Christine Almeida Silva;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.38.1-38.15
    • /
    • 2022
  • Objectives: This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods: The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results: ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions: ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.

Isolation and Identification of Bacillus cereus from Fermented Red Pepper-Soybean Paste (Kochujang), and Its Heat Resistance Characteristics

  • Kim, Yong-Suk;Ahn, Yong-Sun;Jeon, Do-Youn;Shin, Dong-Hwa
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.123-129
    • /
    • 2008
  • To isolate Bacillus cereus presenting at a level of 5 log CFU/g in kochujang, a primary dilution ($10^{-1}$) of kochujang was heated at $85^{\circ}C$ for 5 min. Two isolated strains Voges-Proskauer positive colony (KBC) and a negative colony (KBM) were identified as B. cereus and Bacillus mycoides, respectively, by biochemical test and 16S rDNA sequencing. $D_{100^{\circ}C}$-Values of KBC and KBM strains was 8.37 and 7.08 min, respectively. When spores of KBC strain were inoculated to kochujang at the level of 4-5 log spores/g, the number of spores was no significant difference (p<0.05) for each sample from 1 up to 60 day of aging. When kochujang was inoculated with 4 log spores/g and heated at $85^{\circ}C$ for 15 min, the number of spores was similar to that of unheated kochujang. Therefore, we estimated that B. cereus isolated from kochujang resistant on the heat treatment ($85^{\circ}C$, 15 min) and its heat resistance characteristics could be used to count the number in kochtjang.

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

High Speed and Continuous Electrospinning Printing Using Polymer Ink (고분자 폴리머 잉크를 이용한 고속 연속 전기 방사 프린팅)

  • Zhang, Da-Hai;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.379-384
    • /
    • 2015
  • Electrospinning has recently been used for micropatterning. The electrospinning method as a patterning tool has the advantage of a rapid patterning speed because it is based on a continuous printing mode rather than a drop-on-demand mode. To obtain stable continuous printing, a high molecular weight polymer must be mixed with functional materials for patterning. In this paper, polyethylene oxide (PEO) was used. The effect of polymer on viscosity and formation of a Taylor cone jet from the electrospinning nozzle was investigated. Finally, the electrospinning patterning results of a silver paste ink on a glass substrate were investigated.

Development of Tactile Sensor for Detecting Contact Force and Slip (접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발)

  • Choi Byung-June;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

Microstructure and dielectric properties with a contents Ca of (Sr.Ca)$TiO_3$-based grain boundary layer ceramics ((Sr.Ca)$TiO_3$계 입계층 세라믹의 Ca변화량에 따른 미세구조 및 유전특성)

  • 최운식;김충혁;이준웅
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.534-542
    • /
    • 1994
  • Microstructures and dielectric properties of (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$+0.006Nb$_{2}$O$_{5}$ (0.05.leq.x.leq.0.2) ceramic were investigated. The specimens fired in a reducing atmosphere(N$_{2}$) were painted on the surface with CuO paste, and then annealed at 1100.deg. C for 2 hr. SEM and EDAX revealed that CuO penetrated rapidly into the bulk along the grain boundaries during the annealing. Grain size increased with increasing Ca content up to 15[mol%], but decreased with further addition. In the specimens with 10-15[mol%l of Ca, excellent dielectric properties were obtained as follows; dielectric constant <25000, dielectric loss(tan .delta[%]) <0.3[%] and capacitance change rate with temperature <.+-.[%], respectively. All the specimens in this study exhibited dielectric relaxation with frequency as a function of the temperature. The dispersive frequency was over 10$^{6}$ [Hz].z].

  • PDF

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products

  • Park, Seung-Bum;Lee, Bong-Chun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.125-132
    • /
    • 2006
  • Waste glass has been increasingly used in industrial applications. One shortcoming in the utilization of waste glass for concrete production is that it can cause the concrete to be weakened and cracked due to its expansion by alkali-silica reaction(ASR). This study analyzed the ASR expansion and strength properties of concrete in terms of waste glass color(amber and emerald-green), and industrial by-products(ground granulated blast-furnace slag, fly ash). Specifically, the role of industrial by-products content in reducing the ASR expansion caused by waste glass was analyzed in detail. In addition, the feasibility of using ground glass for its pozzolanic property was also analyzed. The research result revealed that the pessimum size for waste glass was $2.5{\sim}1.2mm$ regardless of the color of waste glass. Moreover, it was found that the smaller the waste glass is than the size of $2.5{\sim}1.2mm$, the less expansion of ASR was. Additionally, the use of waste glass in combination with industrial by-products had an effect of reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass. Finally, ground glass less than 0.075 mm was deemed to be applicable as a pozzolanic material.

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • 김재훈;윤상천;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.29-36
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of molar and fineness modulus of ,and on the properties of fresh mortar. The effect of water-binder ratio, sand-binder ration, content; of ggbs (by mass of total cementitious materials), and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the following conclusion; can be drawn: (1) The mixing time needed (or high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

  • PDF

A study of dietetic therapy on the edema (부종(浮腫)의 식요방법(食療方法)에 관한 연구)

  • Baek, Tae-Hyeun
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.151-160
    • /
    • 2010
  • Objectives : The purpose of this research was to examine dietary therapy on the edema based on the literary findings, for clinical treatment and prevention of the edema. Methods : This Research was examined on histories, compositions, applications, and effects of dietetic treatment about 100 cases of dietary therapy of the edema from Chinese literatures. Results : 1. Various vegetables and animals including herbs, grains, vegetables, fruits, food and drink were used for the dietary therapy. 2. Methods of the preparation for use as therapeutics were decoction, pulvis, gruel, cake, tea, paste, gelatin and etc. 3. Frequently used materials were Cyprinus carpio Linnaeus, Cucumis sativus L. Coix lachrymajobi var. mayuen, Zea mays, Maydis Stigma, Citrullus vulgaris, Zingiber officinale, Cinnamomum cassia Blume, Allium scorodorpasum var. viviparum Regel, Camellia sinensis, Armeniacae amarum Semen, Phyllostachys bambusoides, Luffa cylindrica, Dioscorea batatas Decne, Panax ginseng, Brassica oleracea and Raphanus sativus. Conclusion : Though dietary therapy for the edema is not based on clinical or experimental data, but through experience. It is mostly based on Yin-Yang and five elements, visceral manifestation, channels and their collateral channels and Oriental herbal medicine theories. If we use them properly according to oriental medicine method, it will be effective on treating and preventing the edema.