• Title/Summary/Keyword: paste materials

Search Result 756, Processing Time 0.026 seconds

Research for Solder Paste in Metallic Glass System for Thermoelectric Modules (고온열전모듈용 금속유리계 페이스트 연구)

  • Seo, Seung-Ho;Son, Geun Sik;Seo, Kang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-254
    • /
    • 2018
  • We researched about a bulk metallic glass system as an additive to an Ag paste for high temperature thermoelectric modules. Bulk metallic glass (BMG) ribbons were produced by using a rapid solidification process (RSP) under a cooling rate condition higher than $10^{\circ}C/sec$. We investigated BMG characteristics of the ribbons by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC) in order to evaluate the glass transition temperature ($T_g$) and the recrystallization temperature ($T_x$) lower than $400^{\circ}C$. A milling process was also developed to apply the BMG ribbons to a commercial Al paste as an additive for lower sintering temperature.

Influence of Glass-Frit Size on the Microstructural Evolution of Conductive Silver Paste (전도성 실버 페이스트의 미세구조 발달에 미치는 glass-frit 크기의 영향)

  • Han, Hyun Geun;Seo, Dong Seok;Lee, Jong Kook
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.516-523
    • /
    • 2008
  • The effect of glass-frit size on microstructural evolution and electrical resistance of conductive silver paste was investigated. Silver paste was prepared by mixing 70 wt% commercial silver powder with $1.6{\mu}m$, 3 wt% Bi based glass-frit and 27 wt% organic vehicle. Two different sizes of glass-frit were obtained by ball-milling of commercial glass-frit ($3{\mu}m$) for 3 and 5 days, which had an average particle size of 1.0 and $0.5{\mu}m$. The smaller glass-frit was melt at low sintered temperature and rapidly spread between the silver particles, which is induced the dense networking among silver particles and strong adhesiveness to $Al_2O_3$ substrate. The silver film with smaller glass-frit sintered at $500^{\circ}C$ showed the small pore size and low porosity resulting in low electrical resistivity of $4{\mu}{\Omega}cm$.

A Study of Paste Preparations in "Dongeuibogam" ("동의보감(東醫寶鑑)" 고제(膏劑)에 대한 연구)

  • Hong, Yun-Jung;Song, Ji-Chung;Lee, Si-Hyeoung;Keum, Kyung-Soo
    • Journal of Korean Medical classics
    • /
    • v.24 no.2
    • /
    • pp.109-149
    • /
    • 2011
  • Objectives : The study contains formulas, medicinal herbs, how to make of paste preparations in "Dongeuibogam". Methods : I will try to find paste preparations in "Dongeuibogam" using a word, paste(膏). Results : Paste preparations are categorized into two types: the external and the internal medicine. Paste preparations were used not only in the dermatology disease but in the internal disease. The same formula name to have different information was written by other people. Various kinds of medicinal herbs, minerals, animals were used and type of oil or juice was used to dissolve these. Methods to process paste preparations were to grind medicines or extract from medicinal materials. Paste preparations for the external was used to put in eyes or to push into wound and apply them to the skin. Paste preparations for the internal was used to take with wine, water and herbal tea. Some paste preparations were used both external and internal. Conclusion : These results explain that Paste preparations were variously used in "Dongeuibogam".

Effects of Component Change of Bonding Materials on Field Emission Properties of CNT-Cathodes (본딩재료의 성분 변화가 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Shin Heo-Young;Seong Myeong-Seok;Kim Tae-Sik;Oh Jeong-Seob;Jung Seung-Jin;Lee Ji-Eon;Cho Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.711-716
    • /
    • 2005
  • The effects of change in the component of bonding materials in carbon nanotube cathode (CNT-cathode) on field enhancement and field emission characteristics were investigated. The field enhancement factor$\beta$ was dependent on the electrical conductivity of the bonding materials. The use of frit glass as a bonding material showed a higher field enhancement factor and better field emission characteristics than an Ag paste. The reason for why the frit glass showed better field emission characteristics can be summarized as follows. First, a frit glass improves the real aspect ratio of CNTs compared to an Ag paste. Second, the number of CNTs in CNT-cathodes is considerably reduced because the CNTs were extensively oxidized during $390^{\circ}C$ heat treatment in air atmosphere in the case of Ag paste.

Development of reference materials for cement paste

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.547-556
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) that are chemically stable and can simulate the flow characteristics of cement paste. To this end, the candidate components of RMs were selected considering the currently required properties of RMs. Limestone, slag, silica, and kaolin were selected as substitutes for cement, while glycerol and corn syrup were selected as matrix fluids. Moreover, distilled water was used for mixing. To select the combinations of materials that meet all the required properties of RMs, flow characteristics were first analyzed. The results revealed that silica and kaolin exhibited bilateral nonlinearity. When an analysis was conducted over time, slag exhibited chemical reactions, including strength development. Moreover, fungi were observed in all mixtures with corn syrup. On the other hand, the combination of limestone, glycerol, and water exhibited a performance that met all the required properties of RMs. Thus, limestone, glycerol, and water were selected as the components of the RMs. When the influence of each component of the RMs on flow characteristics was analyzed, it was found that limestone affects the yield value, while the ratio of water and glycerol affects the plastic viscosity. Based on this, it was possible to select the mixing ratios for the RMs that can simulate the flow characteristics of cement paste under each mixing ratio. This relationship was established as an equation, which was verified under various mixing ratios. Finally, when the flow characteristics were analyzed under various temperature conditions, cement paste and the RMs exhibited similar tendencies in terms of flow characteristics. This indicated that the combinations of the selected materials could be used as RMs that can simulate the flow characteristics of cement paste with constant quality under various mixing ratio conditions and construction environment conditions.

Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste (은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성)

  • Park, Seung Woo;Son, Jae Hong;Sim, Sang Bo;Choi, Yeon Bin;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Hydration and time-dependent rheology changes of cement paste containing ground fly ash

  • Chen, Wei;Huang, Hao
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • The use of ground fly ash in concrete can increase the risk of slump loss due to the drastic surface change of the particles after the grinding treatment and the accelerated reaction compared to the untreated ash. This study is aimed at the early age hydration and time-dependent rheology changes of cement paste containing ground fly ash. An original fly ash is ground into different fineness and the hydration of cement paste containing the ground fly ash is monitored with the ultrasound propagation method. The zeta potentials of the solid particles are measured and the changes of rheological parameters of the cement pastes with time are analyzed with a rheometer. A particle packing model is used to probe packing of the solid particles. The results show that the early age hydration of the paste is strongly promoted by replacing Portland cement with fly ash up to 30 percent (by mass), causing increase of the yield stress of the paste. The viscosity of a paste containing ground fly ash is lower than that containing the untreated ash, which is explained by the denser packing of the solid particles.

Effects of Blending Materials on the High Strength of Hardened Cement Paste (시멘트 경화체의 강도특성에 미치는 혼합재료의 영향)

  • 추용식;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1536-1544
    • /
    • 1994
  • DSP technique was applied to improve the high strength characteristics of hardened cement paste using pozzolan materials as blending materials, and pozzolan reactivity was investigated. Pozzolanic materials such as diatomaceous earth, fly ash and hydrated silica were used as blending material. And also superplasticizer was added to cement for molding the specimens. After curing for 60 days, the specimens substituted with 10 and 15 wt% of diatomaceous earth showed better strength characteristics than the specimen with fly ash. The specimen substituted 7 wt.% of hydrated silica exhibited excellent strength with above 800 kg/$\textrm{cm}^2$.

  • PDF

Improvement of Solar Cell Efficiency by Modification of Cellulose Acetate Propionate for Ag paste (전극용 Ag Paste의 Cellulose Acetate Propionate(CAP) 개질에 따른 태양전지 효율 향상)

  • Kim, Dong Min;Lim, Jong Chan;Kim, Jin Hyun;Cha, Sang-Ho;Lee, Jong-Chan
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.227-234
    • /
    • 2018
  • We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, $^1H$ nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524 % to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524 % to 18.622 %.

Freezing and Thawing Resistance of Hardened Cement Paste Containing Blending Materials (혼합재를 사용한 시멘트경화체의 동결융해 저항성)

  • 이양수;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.437-443
    • /
    • 1990
  • The resistivity of cement paste and mortar for freezing and thawing was investigated for densifying the structure of cement paste and mortor, slag, diatomaceous earth and fly ash as blending materials and superplasticizer were used, and air entraining agent was added to absorb the volume expansion by freezing and thawing reaction. And then the specimens were subjected to freeze-thaw in water. When both of air entraining agent and superplasticizer as additives were mixed to specimens, their freeze-thaw resistance was enhanced by the air entraining effect and the water reduction effect. When 4% of slag were added to cement, freeze-thaw resistance was especially excellent. In addition, it was found that the specimens with blending materials were more influenced by curing periods than those without admixture. It is assumed that the curing periods contribute to exibit the potential hydraulicity and pozzolanic reactivity of blending materials and to densify their texture.

  • PDF