• Title/Summary/Keyword: paste materials

Search Result 762, Processing Time 0.028 seconds

Effect of lead-free frit and RuO2 on the electrical properties of thick film NTC thermistors for low temperature co-firing (저온 동시 소성용 후막 NTC 서미스터의 전기적 특성에 미치는 무연계 프릿트 및 RuO2의 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.218-227
    • /
    • 2021
  • A thick film NTC thermistor for low temperature co-firing was manufactured by printing and sintering a paste prepared using NTC powder of Mn1.5Ni0.4Co0.9Cu0.4O4 composition, lead free frit, and RuO2 on a 96 % alumina substrate. The effect of frit and RuO2 on the electrical properties of thick film NTC thermistor was studied. The resistance of the thick film NTC thermistor was higher than that of the bulk phase sintered at the same temperature, but it was found that the negative resistance temperature characteristic appeared more clearly and linearly in the resistance - temperature characteristic. On the other hand, the area resistance decreased as the sintering temperature increased, and the area resistance increased as the amount of frit added increased. The B constant of the thick film NTC thermistor was 3000 K or higher. Among them, it was found that the B constant of the thick film NTC thermistor made of paste with 5 wt% of frit added and sintered at 900℃ showed the highest B constant. Also, it can be seen that the area resistance decreased with the addition of RuO2, and the change in the area resistance decrease of the thick film NTC thermistor obtained by sintering the paste containing 5 wt% of RuO2 at 900℃ is the most obvious.

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

Tensile Strength Properties of the Diffusion Bonding Copula Shape for Micro PCD Tool Fabrication (초소형 PCD 공구 제작을 위한 확산접합부의 형상에 따른 인장강도 특성)

  • Jeong, Ba Wi;Kim, Uk Su;Chung, Woo Seop;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • This study involved the fabrication of precision machine tools using a polycrystalline diamond tip [sintered PCD and cemented carbide (WC-Co) tip] and WC-Co shanks via diffusion bonding with a paste-type nickel alloy filler metal. Diffusion bonding is a process whereby two materials are pressed together at high temperature and high pressure for a sufficient period of time to allow significant atomic diffusion to occur. For smooth progress, a filler metal of nickel alloy was used at the interface. Optical microscopy images were used to observe the copula of the bonded layer. It was confirmed that cracks occurred near the junction in all cases. The tensile strength of the bond was measured using a universal testing machine (UTM) with WC-Co proportional test specimens.

AN EXPERIMENTAL STUDY ON THE EFFECT OF CALCIUM SULFATE ON BONE REGENERATION (치과용 연석고가 골조직재생에 미치는 영향에 관한 실험적 연구)

  • Choi, Jang-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.3
    • /
    • pp.217-227
    • /
    • 1998
  • Calcium sulfate(plaster of Paris) has been used in dental and orthopedic surgery for about 100 years. It is well known that the plaster is bioresorbable, biocompatible, defect conformable and moldable. The purpose of this study is to evaluate two effects of calcium sulfate on bone regeneration, that is, the effects of graft materials and barrier for bone regeneration. Cortical bone defects were formed for recipient site on the femurs of 19 Sprague-Dawley rats. The autogenous particulated bone and calcium sulfate were grafted to the defects. Calcium sulfate paste, $Gore-Tex^R$ membrane(W.L. GORE & ASSOCIATES LTD., U.S.A.) and rubber sheet were used for the shielding materials. The results were as follows : 1. Calcium sulfate that had been grafted in the cortical bone defect was almost resorbed before bone remodeling, resultantly had little effect on bone regeneration. 2. Resoption process of calcium sulfate grafted on the bone grafting area tends to be accelerated, as being divided into numerous small particles progressively. Under the situation where the calcium sulfate was protected, with the coverage of fascia, $Gore-Tex^R$ membrane or rubber sheet, new bone formation was confirmed with presence of calcium sulfate particles over 6 weeks after grafting. 3. In the case of calcium sulfate covered with membrane, distinct bone formation was observed on the marrow space of femur adjacent to the plaster mass. 4. Rubber shielded plaster group revealed new bone trabeculae under the rubber sheet, but it showed ischemic degeneration of superficial cortical bone.

  • PDF

Durability Enhancement in Nano-Silica Admixed Reinforced Mortar

  • Saraswathy, Velu;Karthick, Subbiah;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.297-306
    • /
    • 2014
  • Recently nano-materials are gaining more importance in the construction industry due to its enhanced energy efficiency, durability, economy, and sustainability. Nano-silica addition to cement based materials can control the degradation of the fundamental calcium-silicate-hydrate reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability. In this paper, the influence of synthesized nano silica from locally available rice husk on the mechanical properties and corrosion resistant properties of OPC (Ordinary Portland Cement) has been studied by conducting various experimental investigations. Micro structural properties have been assessed by conducting Scanning Electron Microscopy, Thermo gravimetry and Differential Thermal Analysis, X-Ray Diffraction analysis, and FTIR studies. The experimental results revealed that NS reacted with calcium hydroxide crystals in the cement paste and produces Calcium Silicate Hydrate gel which enhanced the strength and acts as a filler which filled the nano pores present in concrete. Hence the strength and corrosion resistant properties were enhanced than the control.

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

A Study on the Impervious Effect of Middle Pressure Grouting Technics in using the Environmentally Friendly Impregnation Materials (친환경 주입재를 사용한 중압 그라우팅 기법의 차수효과에 관한 연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyen;Baek, Ki-Hyun;Choi, Choon-Sik;Jung, Jong-Ju;Do, Jong-Nam;Lim, Joo-Heon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.424-433
    • /
    • 2006
  • This paper studies the field applicability of the Special Chemical grouting Method(SCM) in reinforcing and reducing permeability of the back of an existing continuous wall. SCM uses double rod which imposes intermediate pressure$(981\sim9,810kPa)$ to disturb, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Uniaxial compression tests, test for chemical properties and fish poison test are performed. Test results indicate that the method results in higher durability, less leaching through use of the environmentally friendly injection material, and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.

  • PDF

A Study on the Characterization Method of Materials in Hanji Costumes (한지의상에 나타난 소재 표현기법 연구)

  • Lee, Su-Jeong;Chae, Seon-Mee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.433-439
    • /
    • 2004
  • Hanji costumes has four aspects that allow the creator or artist to create many variations. The pictorial effects of Hanji costumes are produced through variations in the dyes and brushes used for its application. The amount of water and texture of the Hanji mixture also influences the Hanji clothing. This effect was expressed using a dry brush technique, a dripping technique, India inks, and fragments from other Hanji works. A second aspect of Hanji clothing is the coloring effect in the Hanji costumes. The coloring is due to the fibers in the preparation mixture and the uniqueness of the dyes. The Hanji clothing was dyed various colors and patterns by dip dyeing, block dyeing, silk screens, digital printing. The third aspect of Hanji imagination in clothing is the decorative details. The details in Hanji clothing can be seen using frills, pleats, tucks and ribbons. The last variation of Hanji clothing can be expressed through crafting techniques. These techniques are the quality of paper string, cuts in the paper and paste ingredients. With Hanji cloth, it is possible to plait, roll, and crample into other flexible & useful materials.

Quality Improvement of Recycled Aggregates from Waste Concrete by the heating and grinding

  • Kim, Hyung-Seok;Han, Gi-Chun;Ahn, Ji-Whan;Park, Jae-Seok;Kim, Hwan;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • To examine the grinding effect through preheating of waste concrete as a way of retrieving coarse aggregates from waste concrete, the removal rates of cement mortar and paste of both recycled aggregates and heated and grinded ones were investigated. As the preheating temperature increased, the removal rate of cement mortar from waste concrete was raised, and this kind of removal hardly affected the abrasion rate and specific gravity of aggregates. On the other hand, when it was treated over 40$0^{\circ}C$ of preheating temperature, the absorptance was reduced to less than 2.17, and cement mortar was effectively separated from waste concrete. It could meet the Korean Standards on recycled aggregates for concrete, and it is expected to expand the scope of utilization by making it possible to retrieve the aggregates which have the properties close to natural aggregates.

  • PDF