• Title/Summary/Keyword: past climate change

Search Result 366, Processing Time 0.027 seconds

Analysis of Construction Conditions Change due to Climate Change (기후변화에 의한 건설시공환경 변화 분석)

  • Bae, Deg Hyo;Lee, Byong Ju;Jung, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.513-521
    • /
    • 2008
  • The objective of this study is the evaluation of the impact on the construction condition due to historical observation data and IPCC SRES A2 climate change scenario. For this purpose, daily precipitation and daily mean temperature data which have been observed over the past 30 years by Korea Meteorological Administration are collected and applied. Also, A2 scenarios during 2011~2040 and 2051~2080 are used for this analysis. According to the results of trend analyses on annual precipitation and annual mean temperature, they are on the increase mostly. The available working day and the day occurred an extreme event are used as correlation indices between climate factor and construction condition. For the past observation data, linear regression and Mann-Kendall test are used to analyze the trend on the correlation index. As a result, both working day and extreme event occurrence day are increased. Likewise, for the future, variation analysis showed the similar result to that of the past and the occurrence frequency of extreme events is increased obviously. Therefore, we can project to increase flood damage potential on the construction site by climate change.

Evaluating the impacts of extreme agricultural droughts under climate change in Hung-up watershed, South Korea

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Wan-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.143-143
    • /
    • 2021
  • Climate change indicators, mainly frequent drought which has happened since the drought of 1994, 1995, and 2012 causing the devastating effect to the agricultural sector, and could be more disruptive given the context of climate change indicators by increasing the temperature and more variable and extreme precipitation. Changes in frequency, duration, and severity of droughts will have enormous impacts on agriculture production and water management. Since both the possibility of drought manifestation and substantial yield losses, we are propositioning an integrated method for evaluating past and future agriculture drought hazards that depend on models' simulations in the Hung-up watershed. to discuss the question of how climate change might influence the impact of extreme agriculture drought by assessing the potential changes in temporal trends of agriculture drought. we will calculate the temporal trends of future drought through drought indices Standardized Precipitation Evapotranspiration Index, Standardized Precipitation Index, and Palmer drought severity index by using observed data of (1991-2020) from Wonju meteorological station and projected climate change scenarios (2021-2100) of the Representative Concentration Pathways models (RCPs). expected results confirmed the frequency of extreme agricultural drought in the future projected to increase under all studied RCPs. at present 100 years drought is anticipated to happen since the result showing under RCP2.6 will occur every 24 years, RCP4.5 every 17 years, and RCPs8.5 every 7 years, and it would be double in the largest warming scenarios. On another side, the result shows unsupportable water management, could cause devastating consequences in both food production and water supply in extreme events. Because significant increases in the drought magnitude and severity like to be initiate at different time scales for each drought indicator. Based on the expected result that the evaluating the impacts of extreme agricultural droughts and recession could be used for the development of proactive drought risk management, policies for future water balance, prioritize sustainable strengthening and mitigation strategies.

  • PDF

The Development and Effects of Climate Literacy Program on Elementary School Students Focused on the Keeling Curve Activities Highlighting Inquiry Process (초등학생의 기후소양 함양을 위한 프로그램 개발 및 효과 : 탐구과정이 강조된 킬링 곡선(Keeling Curve) 활동을 중심으로)

  • Son, Jun-ho
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.3
    • /
    • pp.292-308
    • /
    • 2016
  • The purpose of this study was to find out the effects of climate change education program focused on the keeling curve activities highlighting inquiry process on elementary students' climate literacy. Most of the students have not been able to correctly understand just how serious phenomenon that the temperature rise of the last 100 years is. As a result, there is educational limitations in order to bring about a substantial change in the attitudes toward climate change. So the development program was applied to various questions and explored strategies in order to compare with past climate change data. The results described that 46 students in the experimental group had statistically significant effects on cognitive domain, critical thinking of affective domain and practical domain. In addition, as a result of the analysis of teachers' instructional perspectives and students interview, they supported the researcher's opinion that the developed program could help students improve the climate literacy.

Consideration on new research direction in marine environmental sciences in relation to climate change (기후변화에 대비한 환경연구의 방향)

  • Kim, Su-Am
    • Journal of Environmental Policy
    • /
    • v.1 no.1
    • /
    • pp.1-24
    • /
    • 2002
  • Due to the recent increase in greenhouse gases in atmosphere, world climate is rapidly changing and in turn, the earth ecosystem responds upon the climate changes. Comparing the ecosystem in the past, the present shapes of ecosystem is the result of the serious modification. Fishery resources in marine ecosystem, which usually occupy the upper trophic level, are also inevitable from such changes, because they always react to the natural environmental conditions. The northwestern Pacific is the most productive ocean in the world producing about 30% of world catch. From time to time, however, it has been notified that abundance, distribution and species composition of major fish species were altered by climate events. Furthermore, primary productivity of the ocean is not stable under the changing environments, so that carrying capacity of the ocean varies from one climate regime to another. Major climate events such as global warming, atmospheric circulation pattern, climate regime shift in the North Pacific, and El Nino event in the Pacific tropical waters were introduced in relation to fisheries aspects. The current status and future projection of fishery production was investigated, especially in the North Pacific including Korean waters. This new paradigm, ecosystem response to environmental variability, has become the main theme in marine ecology and fishery science, and the GLOBEC-type researches might provide a solution far cause-effect mechanism as well as prediction capability. Ecosystem management principles for multi-species should be adopted for better understanding and management of ecosystem.

  • PDF

Synoptic Change Characteristics of the East Asia Climate Appeared in Seoul Rainfall and Climatic Index Data (서울지점 강우자료와 기후지표자료에 나타난 동아시아 기후의 종관적 변화특성)

  • Hwang, Seok Hwan;Kim, Joong Hoon;Yoo, Chulsang;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.409-417
    • /
    • 2009
  • In this study it was assessed the accuracy of the Chukwooki rainfall data in Seoul by comparing with tree-ring width index data, sunspot numbers, southern oscillation index (SOI) and global temperature anomaly. And it was investigated the correlations of climatic change and change characteristics in past north-east asia by comparisons of tree-ring width index data in near Korea. The results of this study shows that Chukwooki rainfall data has the strong reliance since the trends and depths of change are very well matched with other comparative data. And with the results by compared with tree-ring width index data in six sites of near Korea, climates of north-east asia are changed with strong correlations as being temporal and spatial and longterm periodic possibility of reproducing are exist on those changes. However characteristics of climate change post 1960 A.D. are investigated as represented differently to past although statistical moving characteristics or changing criterion are within the limitations of reproducing phase in the past since they represent the different trends and irregularity and their frequencies are increase. The results of this study are widely used on long-term forecasting for climate change in north-east asia.

Climate Aridity/humidity Characteristics in Seoul According to Changes in Temperature and Precipitation Based on RCP 4.5 and 8.5 (RCP 4.5와 8.5에 따른 기온 및 강수량변화를 반영한 서울 기후 건조/습윤특성)

  • Rim, Chang-Soo;Kim, Seong-Yeop
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.421-433
    • /
    • 2014
  • In this study, monthly and annual aridity indices which are the ratios of precipitation to potential evapotranspiration in Seoul climate measurement station were analyzed for past 50 years (1961~2010), and the ratio of aridity index simulated by climate change scenarios (RCP 4.5 and 8.5) for each future period (2011~2040, 2041~2070, 2071~2100) to aridity index for the past period (1971~2000) was analyzed. Furthermore, 5 different potential evapotranspiration equations (FAO P-M, Penman, Makkink, Priestley-Taylor, Hargreaves) were applied to analyze the effect of potential evapotranspiration equation on estimating aridity index and aridity index variation ratio (%). The study results indicate that the monthly precipitation, average temperature and potential evapotranspiration were increased in each future period as compared to past period for both RCP 4.5 and RCP 8.5. Furthermore, winter period showed more significant increase of potential evapotranspiration than summer period, but aridity index showed different patterns as compared with potential evapotranspiration reflecting the influence of precipitation. Therefore, it is necessary to make preparation for the increment of winter evapotranspiration in terms of water resources management. The monthly and annual aridity indices based on future climate change scenarios were greatly different according to potential evapotranspiration equations; however, monthly and annual patterns of aridity index variation ratio (%) in the future period as compared to past period were very similar regardless of applied potential evapotranspiration equation.

Dynamic Downscaling for Regional Ocean Climate Modeling Around the Korean Peninsula and Its Application in Fisheries (한반도 주변 해역 해양기후모델 구축 및 수산분야 적용)

  • Changsin Kim;Joon-Soo Lee;Joon-Yong Yang;In-Seong Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • We developed a regional ocean climate model using dynamic downscaling in the Northwest Pacific Ocean to build a climate model for the Korean Peninsula. The past marine environment was reproduced through historical simulations, and the future marine environment in 2100 was predicted according to the shared socioeconomic pathways (SSP) climate change scenario. The future sea surface temperature of the Korean seas is predicted to rise about 1-4℃, and the increase in water temperature in the East Sea is expected to be the largest. The National Institute of Fisheries Science has monitored abnormal seawater temperatures such as high and low seawater temperatures in coastal and inland waters, and predicted that the number of high seawater temperature days in the East, West, South Sea, and the coast of Jeju Island will increase in the future. In addition, the occurrence of Ciguatera fish poison plankton around Jeju Island was projected to increase. This study is expected to provide accurate forecasting information for fishery issues. The aim of this study was to analyze future ocean environment changes around the Korean Peninsula using climate change SSP scenarios and predict fisheries issues through future projections of the regional ocean climate model.

Panel analysis of radish yield using air temperature (기온을 이용한 무 생산량 패널분석)

  • Kim, Yong-Seok;Shim, Kyo-Moon;Jung, Myung-Pyo;Jung, In-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.481-485
    • /
    • 2014
  • According to statistical data the past ten years, cultivation area and yield of radish are steadily decreasing. This phenomenon cause instability of radish's supply due to meteorological chage, even if radish's yield per unit area is increasing by cultivation technological development. These problems raise radish's price. So, we conducted study on meteorological factors for accuracy improvement of radish yield estimation. Panel analysis was used with two-way effect model considering group effect and time effect. As the result, we show that mixed effects model (fixed effect: group, random effects: time) was statistical significance. According to the model, a rise of one degree in the average air temperature on August will decrease radish's yield per unit area by $428kg{\cdot}10a^{-1}$ and that in the average air temperature on October will increase radish's yield per unit area by $438kg{\cdot}10a^{-1}$. The reason is that radish's growth will be easily influenced by meteorological condition of a high temperature on August and by meteorological condition of a low temperature on Octoboer.

D-PSA-K: A Model for Estimating the Accumulated Potential Damage on Kiwifruit Canes Caused by Bacterial Canker during the Growing and Overwintering Seasons

  • Do, Ki Seok;Chung, Bong Nam;Joa, Jae Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.537-544
    • /
    • 2016
  • We developed a model, termed D-PSA-K, to estimate the accumulated potential damage on kiwifruit canes caused by bacterial canker during the growing and overwintering seasons. The model consisted of three parts including estimation of the amount of necrotic lesion in a non-frozen environment, the rate of necrosis increase in a freezing environment during the overwintering season, and the amount of necrotic lesion on kiwifruit canes caused by bacterial canker during the overwintering and growing seasons. We evaluated the model's accuracy by comparing the observed maximum disease incidence on kiwifruit canes against the damage estimated using weather and disease data collected at Wando during 1994-1997 and at Seogwipo during 2014-2015. For the Hayward cultivar, D-PSA-K estimated the accumulated damage as approximately nine times the observed maximum disease incidence. For the Hort16A cultivar, the accumulated damage estimated by D-PSA-K was high when the observed disease incidence was high. D-PSA-K could assist kiwifruit growers in selecting optimal sites for kiwifruit cultivation and establishing improved production plans by predicting the loss in kiwifruit production due to bacterial canker, using past weather or future climate change data.

Development of Extreme Event Analysis Tool Base on Spatial Information Using Climate Change Scenarios (기후변화 시나리오를 활용한 공간정보 기반 극단적 기후사상 분석 도구(EEAT) 개발)

  • Han, Kuk-Jin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.475-486
    • /
    • 2020
  • Climate change scenarios are the basis of research to cope with climate change, and consist of large-scale spatio-temporal data. From the data point of view, one scenario has a large capacity of about 83 gigabytes or more, and the data format is semi-structured, making it difficult to utilize the data through means such as search, extraction, archiving and analysis. In this study, a tool for analyzing extreme climate events based on spatial information is developed to improve the usability of large-scale, multi-period climate change scenarios. In addition, a pilot analysis is conducted on the time and space in which the heavy rain thresholds that occurred in the past can occur in the future, by applying the developed tool to the RCP8.5 climate change scenario. As a result, the days with a cumulative rainfall of more than 587.6 mm over three days would account for about 76 days in the 2080s, and localized heavy rains would occur. The developed analysis tool was designed to facilitate the entire process from the initial setting through to deriving analysis results on a single platform, and enabled the results of the analysis to be implemented in various formats without using specific commercial software: web document format (HTML), image (PNG), climate change scenario (ESR), statistics (XLS). Therefore, the utilization of this analysis tool is considered to be useful for determining future prospects for climate change or vulnerability assessment, etc., and it is expected to be used to develop an analysis tool for climate change scenarios based on climate change reports to be presented in the future.