• Title/Summary/Keyword: past climate change

Search Result 366, Processing Time 0.029 seconds

Effects of Continental Evaporation for Precipitation Over East Asia in the Past and the Future of HadGEM2-AO Climate Model (HadGEM2-AO 기후모델에 따른 과거와 미래의 동아시아 강수량에 대한 육지 증발량의 영향)

  • Kim, Jin-Uk;Lee, Johan;Boo, Kyung-On;Shim, Sungbo;Kim, Jee-Eun;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.553-563
    • /
    • 2016
  • Land evaporation contribution to precipitation over East Asia is studied to understand terrestrial moisture source of continental precipitation. Moisture recycling of precipitation relying on terrestrial evaporation is estimated based on the analysis method of Van der Ent et al. (2010). We utilize HadGEM2-AO simulations for the period of 1970~1999 and 2070~2099 from RCP8.5. Globally, 46% of terrestrial precipitation is depending from continental evaporation. 58% of terrestrial evaporation returns as continental precipitation. Over East Asia, precipitation has been affected by local evaporation and transported moisture. The advection of upwind continental evaporation results from the prevailing westerlies from the midwestern of Eurasian continent. For the present-day period, about 66% of the precipitation over the land of East Asia originates from land evaporation. Regionally, the ratios change and the ratios of precipitation terrestrial origin over the Northern inland and Southern coast of East Asia are 82% and 48%, respectively. Seasonally, the continental moisture recycling ratio is larger during summer (JJA) than winter (DJF). According to RCP8.5, moisture recycling ratio is expected to change. At the end of the 21st century, the impact of continental moisture sources for precipitation over East Asia is projected to be reduced by about 5% compared to at the end of 20th century. To understand the future changes, moisture residence time change is investigated using depletion and replenishment time.

Observation-based Analysis of Climate Change using Meteorological Data of Gangneung (기상 관측 자료를 이용한 강릉의 기후변화 추세 분석)

  • Lee, Jaeho;Baek, Hee-Jeong;Hyun, Yu-Kyung;Cho, Chunho
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • This study is to identify the trend of climate change in Gangwon-do by examining accumulated climate data such as temperature and precipitation in Gangneung city over the past about 100 years. The annual mean temperature and precipitation in Gangneung have increased by $1.4^{\circ}C$ and 14.7%, respectively, over the last 98 years (1912~2009). The trends of Gangneung showed that precipitation has intensified as the number of precipitation days decreased while its amount increased during the period. Based on the temperature data, spring and summer began earlier whereas the onsets of fall and winter were delayed. Summer has become longer and winter shorter by about a month. Averaging observation data from seven weather stations in Gangwon-do, the annual mean temperature and precipitation have increased by $0.8^{\circ}C$ and 21.0% respectively over the last 37 years (1973~2009). By region, Wonju city recorded the biggest increase of $1.6^{\circ}C$ in the annual mean temperature while Sokcho city the smallest increase of $0.4^{\circ}C$. In the annual mean precipitation, Daegwallweong recorded the biggest change of 22.2% and Wonju city the smallest of 12.0%.

Future drought risk assessment under CMIP6 GCMs scenarios

  • Thi, Huong-Nguyen;Kim, Jin-Guk;Fabian, Pamela Sofia;Kang, Dong-Won;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.305-305
    • /
    • 2022
  • A better approach for assessing meteorological drought occurrences is increasingly important in mitigating and adapting to the impacts of climate change, as well as strategies for developing early warning systems. The present study defines meteorological droughts as a period with an abnormal precipitation deficit based on monthly precipitation data of 18 gauging stations for the Han River watershed in the past (1974-2015). This study utilizes a Bayesian parameter estimation approach to analyze the effects of climate change on future drought (2025-2065) in the Han River Basin using the Coupled Model Intercomparison Project Phase 6 (CMIP6) with four bias-corrected general circulation models (GCMs) under the Shared Socioeconomic Pathway (SSP)2-4.5 scenario. Given that drought is defined by several dependent variables, the evaluation of this phenomenon should be based on multivariate analysis. Two main characteristics of drought (severity and duration) were extracted from precipitation anomalies in the past and near-future periods using the copula function. Three parameters of the Archimedean family copulas, Frank, Clayton, and Gumbel copula, were selected to fit with drought severity and duration. The results reveal that the lower parts and middle of the Han River basin have faced severe drought conditions in the near future. Also, the bivariate analysis using copula showed that, according to both indicators, the study area would experience droughts with greater severity and duration in the future as compared with the historical period.

  • PDF

Development of Spatial Statistical Downscaling Method for KMA-RCM by Using GIS (GIS를 활용한 KMA-RCM의 규모 상세화 기법 개발 및 검증)

  • Baek, Gyoung-Hye;Lee, Moun-Gjin;Kang, Byung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.136-149
    • /
    • 2011
  • The aim of this study is to develop future climate scenario by downscaling the regional climate model (RCM) from global climate model (GCM) based on IPCC A1B scenario. To this end, the study first resampled the KMA-RCM(Korea meteorological administration-regional climate model) from spatial resolution of 27km to 1km. Second, observed climatic data of temperature and rainfall through 1971-2000 were processed to reflect the temperature lapse rate with respect to the altitude of each meteorological observation station. To optimize the downscaled results, Co-kriging was used to calculate temperature lapse-rate; and IDW was used to calculate rainfall lapse rate. Fourth, to verify results of the study we performed correlation analysis between future climate change projection data and observation data through the years 2001-2010. In this study the past climate data (1971-2000), future climate change scenarios(A1B), KMA-RCM(Korea meteorological administration-regional climate model) results and the 1km DEM were used. The research area is entire South Korea and the study period is from 1971 to 2100. Monthly mean temperatures and rainfall with spatial resolution of 1km * 1km were produced as a result of research. Annual average temperature and precipitation had increased by $1.39^{\circ}C$ and 271.23mm during 1971 to 2100. The development of downscaling method using GIS and verification with observed data could reduce the uncertainty of future climate change projection.

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

Responses of the Ross Sea to the Climate Change: Importance of observations in the Ross Sea, Antarctica (기후변화에 따른 남극 로스해 반응에 관한 고찰: 남극 로스해 관측의 중요성)

  • Yoon, Seung-Tae
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.69-82
    • /
    • 2022
  • The Ross Sea, Antarctica plays an important role in the formation of Antarctic Bottom Water (AABW) which is the densest water mass in global thermohaline circulation. Of the AABW, 25% is formed in the Ross Sea, and sea ice formation at the polynya (ice-free area) developed in front of ice shelves of the Ross Sea is considered as a pivotal mechanism for AABW production. For this reason, monitoring the Ross Sea variations is very important to understand changes of global thermohaline circulation influenced by climate change. In addition, the Ross Sea is also regarded as a natural laboratory in investigating ice-ocean interactions owing to the development of the polynya. In this article, I introduce characteristics of the Ross Sea described in previous observational studies, and investigate variations that have occurred in the Ross Sea in the past and those taking place in the present. Furthermore, based on these observational results, I outline variations or changes that can be anticipated in the Ross Sea in the future, and make an appeal to researchers regarding the importance and necessity of continuous observations in the Ross Sea.

Trends in Sea Surface Temperature (SST) Change Near the Korean Peninsula for the Past 130 Years (지난 130년 간 한반도 근해의 표층 수온 변화 경향)

  • Kim, Seong-Joong;Woo, Sung-Ho;Kim, Baek-Min;Hur, Soon-Do
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.281-290
    • /
    • 2011
  • This study examined the change in sea surface temperature (SST) around the Korean peninsula since industrialization at year 1880, and its possible causes using observation based data from the Hadley Center, the Goddard Institute of Space Studies, and National Climate Data Center. Since year 1880, There have been multi-decadal fluctuations with a gradual reduction from 1880 to around 1940, and from 1950-1980. There has then been a marked increase from 1940-1950, and from 1980 to the present. The ocean surface warming is larger during the boreal winter than summer, and greater in the south. The multi-decadal SST fluctuations around the Korean Peninsula are largely consistent with the negative phase of the Pacific Decadal Oscillation (PDO), which fluctuates with periods of about 20-50 years. Secondly, the El Ni$\tilde{n}$o-Southern Oscillation (ENSO), whose long period component moves along with the PDO, appears to influence the SST near the Korean Peninsula, especially in recent decades. Overall, the SST around the Korean Peninsula has warmed since year 1880 by about $1^{\circ}C$, which is about twice the global-mean ocean surface warming. This long-term warming is aligned with an increase in greenhouse gas concentration, as well as local factors such as the PDO.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Water Quality Analysis of Hongcheon River Basin Under Climate Change (기후변화에 따른 홍천강 유역의 수질 변화 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Kim, Jungwook;Han, Daegun;Hong, Ilpyo;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.348-358
    • /
    • 2015
  • Impacts of climate change are being observed in the globe as well as the Korean peninsula. In the past 100 years, the average temperature of the earth rose about 0.75 degree in celsius, while that of Korean peninsula rose about 1.5 degree in celsius. The fifth Assessment Report of IPCC(Intergovermental Panel on Climate Change) predicts that the water pollution will be aggravated by change of hydrologic extremes such as floods and droughts and increase of water temperature (KMA and MOLIT, 2009). In this study, future runoff was calculated by applying climate change scenario to analyze the future water quality for each targe period (Obs : 2001 ~ 2010, Target I : 2011 ~ 2040, Target II : 2041 ~ 2070, Target III : 2071 ~ 2100) in Hongcheon river basin, Korea. In addition, The future water quality was analyzed by using multiple linear regression analysis and artificial neural networks after flow-duration curve analysis. As the results of future water quality prediction in Hongcheon river basin, we have known that BOD, COD and SS will be increased at the end of 21 century. Therefore, we need consider long-term water and water quality management planning and monitoring for the improvement of water quality in the future. For the prediction of more reliable future water quality, we may need consider various social factors with climate components.