• Title/Summary/Keyword: passive microwave radiometer

Search Result 24, Processing Time 0.027 seconds

System Requirement Analysis of Passive Microwave Radiometer in Earth Observation Satellite (지구관측위성 수동형 마이크로파 라디오미터의 시스템 설계 요구 사항 분석 연구)

  • Ryu, Sang-Burm;Yong, Sang-Soon;Lee, Sang-Kon;Lee, Seung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2012
  • In this research, we describe recent technologies and system requirements of the passive microwave radiometer used in Earth observation satellites. And we classify types of microwave radiometer system for Earth observation satellites according to observation targets and ways to scan and discuss a design method. Also, requirements of passive radiometer for Earth observation missions in the latest practical examples used and developed are analyzed in this research.

Microwave Radiometer for Space Science and DREAM Mission of STSAT-2

  • Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.4-32
    • /
    • 2008
  • The microwave instruments are used many areas of the space remote sensing and space science applications. The imaging radar of synthetic aperture radar (SAR) is well known microwave radar sensor for earth surface and ocean research. Unlike radar, microwave radiometer is passive instrument and it measures the emission energy of target, i.e. brightness temperature BT, from earth surface and atmosphere. From measured BT, the geophysical data like cloud liquid water, water vapor, sea surface temperature, surface permittivity can be retrieved. In this paper, the radiometer characteristics, system configuration and principle of BT measurement are described. Also the radiometer instruments TRMM, GPM, SMOS for earth climate, and ocean salinity research are introduce. As first korean microwave payload on STSAT-2, the DREAM (Dual-channels Radiometer for Earth and Atmosphere Monitoring) is described the mission, system configuration and operation plan for life time of two years. The main issues of DREAM unlike other spaceborne radiometers, will be addressed. The calibration is the one of main issues of DREAM mission and how it contribute on the space borne radiometer. In conclusion, the radiometer instrument to space science application will be considered.

  • PDF

A Study on a Human Body Detection Sensor Using Microwave Radiometer Technologies (마이크로파 라디오미터 기술을 응용한 인체 감지 센서에 관한 연구)

  • Son, Hong-Min;Park, Hong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.333-340
    • /
    • 2015
  • In this paper, we propose a passive microwave sensor for detecting human body using microwave radiometer technologies. The proposed sensor detects human body by measuring the change of the received radiation power from fixed background object due to human body. A C-band microwave radiometer is designed and implemented. The received radiation power changes due to human body is measured by the C-band microwave radiometer, and the effectiveness of the proposed sensor is evaluated by the measurement result analysis.

Study on effective band of advanced microwave scanning radiometer (AMSR) for observing first year sea ice in the Okhotsk Sea by airborne microwave radiometer (AMR)

  • Nakayama, Masashige;Nishio, Fumihiko;Tanikawa, Tomonori;Cho, Kohei;Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.456-461
    • /
    • 1999
  • It is very important for monitoring the interannual variability of sea ice extents in the Okhotsk Sea because the global warming has firstly appeared around the Okhotsk Sea, locating around the southernmost region of sea ice cover in the Northern Hemisphere. In order to develop the sea ice concentration algorithm by microwave sensors onboard satellite, electromagnetic properties of sea ice in the Okhotsk Sea, therefore, were observed by airborne microwave radiometer (AMR), which has the same frequencies as AMSR (Advanced Microwave Scanning Radiometer), ADEOS-II, launching on November, 2000. On this study, it is discussed how to make the image of AMR-EFOV and the video image with nadir angle under flight at the same time, and superimpose the brightness temperature data by AMR-EFOV on the video mosaiced images. For comparing SPOT image, it is clearly that the variation of brightness temperature is small in 89GHz V-pol without the sea ice types and increase at the lower frequency-band.

  • PDF

Inverse Brightness Temperature Estimation for Microwave Scanning Radiometer

  • Park, Hyuk;Katkovnik, Vladimir;Kang, Gum-Sil;Kim, Sung-Hyun;Choi, Jun-Ho;Choi, Se-Hwan;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.53-59
    • /
    • 2003
  • The passive microwave remote sensing has progressed considerably in recent years Important earth surface parameters are detected and monitored by airborne and space born radiometers. However the spatial resolution of real aperture measurements is constrained by the antenna aperture size available on orbiting platforms and on the ground. The inverse problem technique is researched in order to improve the spatial resolution of microwave scanning radiometer. We solve a two-dimensional (surface) temperature-imaging problem with a major intention to develop high-resolution methods. In this paper, the scenario for estimation of both radiometer point spread function (PSF) and target configuration is explained. The PSF of the radiometer is assumed to be unknown and estimated from the observations. The configuration and brightness temperature of targets are also estimated. To do this, we deal with the parametric modeling of observation scenario. The performance of developed algorithms is illustrated on two-dimensional experimental data obtained by the water vapor radiometer.

Development of a Microwave Radiometer for Remote Sensing of Water Surface Temperature (수면 온도 원격탐사용 마이크로파 라디오미터의 개발)

  • Son, Hong-Min;Youn, Jeong-Beam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1107-1115
    • /
    • 2012
  • This paper presents the development processes of a microwave radiometer for remote sensing of water surface temperature. Achieving the measurement accuracy within $2^{\circ}C$ for water surface temperature of $5{\sim}30^{\circ}C$, the requirements and specifications of the microwave radiometer and its receiver are drawn. The receiver with high gain, high sensitivity is designed and implemented. The receiver has the bandwidth of 50 MHz, the system gain of 45.2 dB and the sensitivity of 0.56K at 5.02 GHz. The effectiveness of the developed microwave radiometer in the measurement of water surface temperature is demonstrated experimentally. The results show the microwave radiometer can detect water surface temperature for $7.5{\sim}18^{\circ}C$ within the accuracy of $0.45^{\circ}C$.

Development of a L-Band Microwave Radiometer for Remote Sensing of Water Surface Salinity (수면 염분 원격탐사용 L-Band 마이크로파 라디오미터의 개발)

  • Son, Hong-Min;Youn, Jeong-Beam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.900-907
    • /
    • 2013
  • The development processes of a L-band microwave radiometer for remote sensing of water surface salinity are described in this paper. Achieving the development aim of the measurement accuracy within 2 psu for water surface salinity of 0~40 psu, the requirements and specifications of the microwave radiometer and its receiver are drawn. The receiver with high gain, high sensitivity is designed and implemented to satisfy these requirements and specifications. The receiver has the bandwidth of 45 MHz, the system gain of 47 dB and the sensitivity of 0.41 K at 1,390 MHz. The effectiveness of the developed L-band microwave radiometer for remote sensing of water surface salinity is demonstrated experimentally. The results show the microwave radiometer can detect water surface salinity for 10~28 psu within the accuracy of 1.4 psu.

Inverse Brightness Temperature Estimation for Microwave Scanning Radiometer

  • Park, Hyuk;Katkovnik, Vladimir;Kang, Gum-Sil;Kim, Sung-Hyun;Choi, Jun-Ho;Choi, Seh-Wan;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.604-609
    • /
    • 2002
  • The passive microwave remote sensing has progressed considerably in recent years. Important earth surface parameters are detected and monitored by airborne and space born radiometers. However the spatial resolution of real aperture measurements is constrained by the antenna aperture size available on orbiting platforms and on the ground. The inverse problem technique is researched in order to improve the spatial resolution of microwave scanning radiometer. We solve a two-dimensional (surface) temperature-imaging problem with a major intention to develop high-resolution methods. In this paper, the scenario for estimation of both radiometer point spread function (PSF) and target configuration is explained. The PSF of the radiometer is assumed to be unknown and estimated from the observations. The configuration and brightness temperature of targets are also estimated. To do this, we deal with the parametric modeling of observation scenario. The performance of developed algorithms is illustrated on two-dimensional experimental data obtained by the water vapor radiometer.

  • PDF

EXPERIMENTAL DEMONSTRATION OF ADVANTAGE OF MOTION INDUCED SYNTHETIC APERTURE RADIOMETER

  • Park, Hyuk;Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Yu, Hwan-Wook;NamGoong, Up;Sim, Won-Seon;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.22-25
    • /
    • 2008
  • Aperture synthesis with platform motion has been presented as a useful tool to achieve the high spatial resolution imaging. Using a motion induced synthetic aperture radiometer (MISAR), a passive microwave image can be achieved with a small number of antennas. Moreover, the MISAR is capable of imaging better than the case without motion, using the same configuration of antenna array. With a platform motion, visibility can be sampled more efficiently, and as a result the imaging performance of the MISAR shows higher quality than the case without platform motion. In this paper, the advantage of MISAR is demonstrated experimentally. Using a laboratory model of inteferometric radiometer, the point source images are obtained under the condition with platform motion and without platform motion. In the experimental results, the point source response of the MISAR shows better quality of sidelobe level and beam efficiency than the case without platform motion.

  • PDF

Passive Microwave Remote Sensing of Snow, Soil Moisture, Surface Temperature and Rain

  • Koike, Toshio;Fujii, Hideyuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.319-322
    • /
    • 1999
  • Land surface hydrological conditions have been considered to play an important role in the global and regional climate variability. Especially, snow, soil moisture, surface temperature, vegetation and rain are the key parameters which should be observed in the global scale. In this paper, new algorithms for these land surface hydrological parameters have been developed by introducing frequency and polarization dependencies of these parameters in the microwave radiative-transfer equations. The algorithms were applied to the TRMM Microwave Radiometer. (TMI) and validated by using the ground data obtained in the Tibetan Plateau. The estimated snow, soil moisture, surface temperature, water content of vegetation and rain patterns corresponded reasonably to the observed ones.

  • PDF