• Title/Summary/Keyword: passive driving

Search Result 116, Processing Time 0.025 seconds

Understanding of Business Simulation learning: Case of Capsim

  • KIM, Jae-Jin
    • Fourth Industrial Review
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Purpose - According to the importance of business simulation learning as a new type of business learning tool, this study reviews the dimensions of business education and a brief history of business education simulation. At the end Capsim strategic management simulation program is introduce with its feature. Research design, data, and methodology - This study has been analyzed in a way that reviews at previous literature on simulation learning and looks at examples and features of Capsim simulation, online business simulation tools which has been used in the global market. Result - Capsim simulations are designed to offer focused opportunities for deep practice. That's why they are often more effective than passive tools such as textbooks, videos, or lectures. By the way, 'deep practice' is very different from 'ordinary practice'. After commuters who drive to school or work can accumulate thousands of hours of driving, but that doesn't make them expert drivers. The key to deep practice is self-awareness. That is, paying attention to what you are doing well and not so well. This is so important to learn that scientists use a specific term for it: 'metacognition', or thinking about the way you think and learn. Conclusion - The use of business simulation learning, such as Capsim, which is a given case, can create similar local systems by potentially engaging a large number of users in the virtual market. It could also be used as an individual to complete business training for students and those who are active in the business field of business.

Effect of Alternator Control on Vehicle Fuel Economy (교류발전기 충전 제어에 따른 차량연비 개선 효과)

  • Cho, Guen-Jin;Wi, Hyo-Seong;Lee, Jong-Hwa;Park, Jin-Il;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.20-25
    • /
    • 2009
  • For many years there has been a trend to increased electrical energy consumption in cars caused by the replacement of mechanical parts by electronic or mechanical devices as well as the introduction of new electronic features. Whereas the number of electrical consumers continues to increase, the battery is still the only passive power source available. Because of this reason, needs for driving power of the engine accessories such as alternator system have increased. Usually, conventional alternator system is directly driven by the crankshaft of engine with belt. Since this increase bring about additional fuel economy. To improve this system automobile makers develops new controled alternator system. This paper focuses on fuel economy improvement according to control of alternator. In this paper, researches are performed on effect of type of Alternator system on fuel economy by experiment. And it is also calculated the effect on vehicle fuel economy using computer simulation with AVL cruise software. As a result, 0.64% of vehicle fuel economy improvement can be achieved in a vehicle with controled Alternator system compared to a vehicle with conventional Alternator system in NEDC mode.

A Study on the Developments of Emission Correction Formula and Emission Characteristics of Greenhouse Gas by 5-Cycle Mode (5-cycle 모드 특성에 따른 온실가스 배출특성 및 배출량 보정식 개발 연구)

  • Park, Jin-Sung;Lim, Jae-Hyuk;Lee, Min-Ho;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.94-100
    • /
    • 2017
  • Due to the environmental problems caused by the greenhouse effect, regulation of $CO_2$ emissions is getting stronger day by day. In paricular, regulations of automobiles $CO_2$ emissions are being strengthen. However, existing $CO_2$ measurement methods do not reflect the environment and operating conditions on actual roads. Emissions of $CO_2$ can be increased by various conditions such as environmental condition(temperature and humidity) and driver's tendency(aggressive and passive). Therefore it is necessary to reflect the conditions of various actual roads such as 5-cycle test method on behalf of the existing $CO_2$ emission measurement method. The 5-cycle measurement method has five test modes; FTP-75, HWFET, US06, SC03, Cold FTP-75. The method reflects the following three environments and operating conditions as compared to conventional method; Using heater at low temperature, Aggressive driving such as rapid acceleration or deceleration, Using air conditioner at high temperature. Because of these various conditions of each test cycle, the 5-cycle method can reflect actual environments and operating conditions. This paper attempt to analyze $CO_2$ emission characteristics based on the results measured through the 5-cycle mode and develop the correction formula that can derive the results of the 5-cycle test method using existing test methods. As a result, the developed correction formula is expected to reduce $CO_2$ emissions and cut down expense for testing 5-cycle mode.

Development of SDI Signal generator for Large size TFT-LCD (대형 TFT-LCD용 SDI 신호 생성기의 개발)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.13-16
    • /
    • 2014
  • In applying LCD to TV application, one of the most significant factors to be improved is image sticking on the moving picture. LCD is different from CRT in the sense that it's continuous passive device, which holds images in entire frame period, while impulse type device generate image in very short time. To reduce image sticking problem related to hold type display mode, we made an experiment to drive TN-LCD like CRT. We made articulate images by fast refreshing images, and we realized the ratio of refresh time by counting between on time and off time for video signal input during 1 frame (16.7ms). Conventional driving signal cannot follow fast on-off speed, so we evaluated new signal generator using SDI (Serial Data Interface) mode signal generator. We realized articulate image generation similar to CRT by high fast full HD (High Definition) signals and TN-LCD overdriving. As a result, reduced image sticking phenomenon was validated by naked eye and response time measurement.

Study of Blurring Free TFT-LCD Using Short Persistance Cold Cathode Fluorescent Lamp in Blinking Backlight Driving (단잔광 냉음극관을 이용한 잔상없는 TFT-LCD에 관한 연구)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.145-148
    • /
    • 2012
  • In applying LCD to TV application, one of the most significant factors to be improved is image sticking on the moving picture. LCD is different from CRT in the sense that it's continuous passive device, which holds images in entire frame period, while impulse type device generate image in very short time. To reduce image sticking problem related to hold typedisplay mode, we made an experiment to drive TN-LCD like CRT. We made articulate images by turn on-off backlight, and we realized the ratio of Back Light on-off time by counting between on time and off time for video signal input during 1 frame (16.7ms). Conventional CCFL (cold cathode fluorescent lamp) cannot follow fast on-off speed, so we evaluated new fluorescent substances of light source to improve residual light characteristic of CCFL. We realized articulate image generation similar to CRT by CCFL blinking drive and TN-LCD overdriving. As a result, reduced image sticking phenomenon was validated by naked eye and response time measurement.

A Study on Active Suspension Control System in Vehicle Bouncing and Pitching Vibration for Improving Ride Comfort (승차감 향상을 위한 차체 상하.피칭 능동 현가제어에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.325-331
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting active robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design control system. Numerical example is shown for validity of robust control system design in active suspension system.

  • PDF

A Study on Adopting Intelligent Control System in Active Suspension Equipment (능동 현가장치에의 지능형 제어시스템 적용에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.287-293
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting intelligent robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design robust control system. Numerical example is shown for validity of intelligent control system design in active suspension system.

  • PDF

Output Filler Design for Noise Reduction of Induction Motor Drive System using H-Bridge 7-Level Inverters (H-Bridge 7레벨 인버터를 이용한 유도전동기 구동시스템의 노이즈 저감을 위한 출력 필터설계)

  • Kim, Soo-Hong;Ahn, Young-Oh;Kim, Yoon-Ho;Bang, Sang-Seok;Kim, Kwang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.36-44
    • /
    • 2006
  • In general, the generated harmonics and noise of the PWM inverter are affected by PWM switching method, switching frequency, dv/dt and di/dt. Since multilevel inverters are often applied to the high power system, and operates with low switching frequency, theyproduce large size of harmonic contents and noise. Thus it is necessary to install output filters in the multilevel inverter. In this paper a filter design approach for the harmonic and noise reduction the three phase induction motor driving system using H-bridge 7-level inverter system is presented. The passive filter that has low cost and simple structure and can effectively reduce harmonics and noise, is designed and applied to the three phase induction motor drive having multilevel inverter system. The designed system is implemented and verified by simulation and experiments.

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.