• Title/Summary/Keyword: passive damping

Search Result 311, Processing Time 0.031 seconds

Hybrid Damping Treatment for Vibration control of an Automotive Roof using Viscoelastic and Piezoelectric material (하이브리드 방법을 이용한 자동차 루프의 진동제어)

  • Na, Jung-Kee;Moon, Sung-Jin;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.994-998
    • /
    • 2004
  • Hybrid method is used to suppress vibration of an automotive roof surface. The hybrid method proposed in this paper is implemented experimentally using both viscoelastic and piezoelectric material. The piezoelectric material is used to control the vibration of automotive structure for lower range of frequencies and the experiment of vibration control using viscoelastic material has been carried out suppress vibrations of high frequency range mark. At first the plate controlled by using hybrid method has been .implemented to verify the performance for suppressing vibration. Then the experiment has been applied to the automotive roof structure.

  • PDF

Passive Vibration Control of Steel-Concrete Composite High-Speed Railway Bridge Under Moving Train Loads (이동열차하중에 대한 강합성형 고속철도교의 수동형 진동제어)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.251-258
    • /
    • 1999
  • The vibration control of bridge is studied considering the vibration characteristics of the Korean-type high-speed railway bridge. Fast nonlinear analysis is adopted as time integration method and the bridge and the train are modeled by FEM and sequentially moving constant forces respectively. Additional damping mechanism is indispensable to the Korean-type high-speed railway bridge because resonance vibration is excited under the maximum design speed. The optimal position and capacity of the damper is studied through the parametric studies, Transient vibration of the bridge is effectively controlled by such additional dampers which means that dampers play a role as structural damping. And also the maximum response of the bridge is reduced. Therefore it is verified that the increase of expected service life and the improvement of serviceability can be obtained through dampers.

  • PDF

Smart tuned mass dampers: recent developments

  • Nagarajaiah, Satish;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.173-176
    • /
    • 2014
  • This special issue focuses on Smart Tuned Mass Dampers (STMD) that are either active or smart or semi-active in nature. Active tuned mass dampers or active mass dampers have found wide acceptance and have been implemented in many tall buildings and long span bridges. Recently researchers have developed a new class of smart tuned mass dampers using either variable stiffness and/or variable damping to effect the change in instantaneous frequency and damping. Since tuning plays a central role in STMDs it is of great current interest thus the topic of this special issue. Discussions of recent active and smart TMD implementations in tall buildings and bridges are also included.

On the Passive type Anti-Rolling Tank and its Activation by Air Blower

  • Lew, Jae-Moon;Park, Bong-Joon;Kim, Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.19-28
    • /
    • 2003
  • The systematic results of anti-rolling tanks tests obtained by bench tester and roll test in towing tank have been examined. The effects on the oscillating period of fluid transfer through the duct of U-tube tank due to damper plates and the effects on roll damping moment of the tank due to swash plates are alto evaluated from the results. A simple control algorithm for a forced fluid transfer in U-tube tanks if devised to active operation of the tank by air blower. The active performances of the tank are confirmed very effective through the tank tests carried out in the irregular waves.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

Development of MR Mount for Vibration Control of Marine Diesel-Generator Set (박용 발전기세트 진동 제어용 MR 마운트 개발)

  • Kang, Ok-Hyun;Kim, Won-Hyun;Joo, Won Ho;Park, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.381-385
    • /
    • 2014
  • This paper investigates the magneto-rheological(MR) mount for the marine diesel-generator(D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, vibration reduction devices need to be developed. To the aim, the flow mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, an excitation test was conducted. In addition, they were applied to a medium-speed diesel generator and it was verified that about 40% of vibration reduction was yielded.

  • PDF

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.

Acoustic Tests on Atmospheric Condition in a Liquid Rocket Engine Chamber (액체로켓엔진 연소실에서의 상온 음향 시험)

  • Ko, Young-Sung;Lee, Kwang-jin;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • Acoustic characteristics of unbaffled and baffled combustion chamber are experimentally investigated under atmospheric condition to preliminarily determine baffle for mitigation of combustion instability. To investigate the effect of the baffle which has several configurations such as radial baffles and hub/blade baffle, resonant-frequency shift and damping factors of the chamber were analyzed and compared quantitatively with those of the unbaffled combustion chamber. From a view of acoustic characteristics, radial baffles with several configurations have not much difference in resonant-frequency shift and damping factor ratio with each other. On the other hand, hub and blade baffle is very effective to suppress the first tangential mode which was found to be the most harmful acoustic mode in KSR(Korean Sounding Rocket)-III engine. But more study on design parameters such as hub size and axial length should be done for complete optimization of hub and blade baffle. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Effect of Intraoperative Deep Brain Stimulation on Viscoelastic Properties of Parkinsonian Rigidity during Surgery (파킨슨성 경직의 점탄성에 대한 수술중의 뇌심부 자극의 효과)

  • Kwon, Yu-Ri;Eom, Gwang-Moon;Park, Sang-Hun;Kim, Ji-Won;Koh, Seong-Beom;Park, Byung-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1035-1040
    • /
    • 2012
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been found to be effective treatment of Parkinson's disease (PD). This study aims to evaluate the effect of DBS for rigidity during DBS surgery. Six Parkinsonian patients who received STN-DBS surgery participated in this study. The examiner imposed flexion and extension of a patient's wrist randomly. Resistance to passive movement was quantified by viscoelastic properties (two damping constants for each of flexion and extension phase and one spring constant throughout both phases). All Viscoelastic constants decreased by DBS (p<0.01). Specifically, reduction in damping constant during flexion ($B_f$) was greater than those of damping constant during extension ($B_e$) and of spring constant (p<0.05). $B_f$ would be appropriate for evaluation of effect of DBS for rigidity during DBS surgery.