• Title/Summary/Keyword: passive control systems

Search Result 463, Processing Time 0.028 seconds

Investigation of a Method for RF Circuits Analysis Based on Electromagnetic Topology

  • Park, Yoon-Mi;Chung, Young-Seek;Cheon, Chang-Yul;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.396-400
    • /
    • 2009
  • In this paper, electromagnetic topology (EMT) was used to analyze the electromagnetic compatibility (EMC) of RF circuits including passive and active components. It is difficult to obtain usable results for problems relating to electromagnetic coupling in complex systems when using conventional numerical or experimental methods. Thus it is necessary to find a new methodology for analyzing EMC problems in complicated electromagnetic environments. In order to consider the nonlinear characteristics of active components, a SPICE diode model was used. A power detector circuit and the receiver circuit of a radio control (RC) car were analyzed and experimented in order to verify the validity of this method.

Analysis of Continuously Variable Damper Characteristics for Semi-Active Suspension Systems (반능동형 현가시스템을 위한 연속가변댐퍼의 특성 해석)

  • 허승진;박기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.128-137
    • /
    • 2003
  • Continuously variable damper can yield diverse damping forces for a single damping velocity. It is widely used in the semi-active suspension system since, with right control logics, it can enhance ride comfort compared to the passive damper while not degrading driving safety. A key to the successful design of the continuously variable damper is the knowledge of its complex and nonlinear characteristics. In this paper, research has been done for analyzing characteristics of the continuously variable damper. Various damper components have been investigated and their effects upon the force-velocity characteristics of the damper have been examined. The effects of the damper characteristics change upon ride comfort and driving safety have also been investigated by numerical simulations.

An energy-based design for seismic resistant structures with viscoelastic dampers

  • Paolacci, F.
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.219-239
    • /
    • 2013
  • The present paper aims at studying the seismic response of structures equipped with viscoelastic dampers (VED). The performance of such a passive control system is here analyzed using the energy balance concept, which leads to an optimal design process. The methodology is based on an energy index (EDI) whose maximization permits determination of the optimal mechanical characteristics of VED. On the basis of a single degree of freedom model, it is shown that the maximum value of EDI corresponds to a simultaneous optimization of the significant kinematic and static response quantities, independently of the input. By using the proposed procedure, the optimal design of new and existing structures equipped with VED, inserted in traditional bracing systems, are here analyzed and discussed.

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

Electrically tunable current mode high Q- bandpass filter

  • Tongkulboriboon, Seangrawee;Petchakit, Wijittra;Kiranon, Wiwat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.237-240
    • /
    • 2005
  • A novel current mode high Q bandpass filter with electronically tuable values of Q based on second generation current controlled conveyor CCCIIs is presented. The circuit offers the advantages of using a few passive elements. The center frequency and pole-Q can be independently adjusted by via dc bias current of CCCIIs, It is shown from SPICE simulation that the results agree well with theoretical analysis

  • PDF

Comparison of the harmonic reduction by using harmonic passive fitters and technique of intervene firing method at the pulse of the 6-pulse phase controlled converter.

  • Wongtongdee, Surached W.;Laohasongkram, Pipat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.782-785
    • /
    • 2005
  • This article introduces technique to reduce harmonic by using the $5^{th}$ and $7^{th}$ harmonic tune filter and line reactor in the comparison to the technique of intervening firing method at the pulse of the 6-pulse phase-controlled converter in every 1/6 period. The design of the technique introduced in this article is to reduce the harmonic distortion of the current and the voltage resulted from three-phase thyristor phase-controlled converter. The waveform obtained from the experiment was analyzed on the spectrum of the current, voltage and the total harmonic distortion. The double firing method causes zero vectors of output voltage and input current. Designing the mechanism of the converter based on the idea of Park Vector Theory, the number of harmonic distortion in the intervening firing method were compared to those in normal firing method.

  • PDF

A New Valve Actuator for a Glaucoma Treatment by Using MEMS

  • Byunghoon Bae;Kim, Nakhoon;Park, Kyihwan;Hongseok Kee;Kim, Seonho;Lee, Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.103.6-103
    • /
    • 2001
  • Glaucoma is an eye disease which is caused by abnormal high IOP (Intra Ocular Pressure) in the eye. High IOP is caused by the aqueous humor which is produced consistently but not drained due to the malfunction of the trabecular system which has a role of draining the aqueous humor into the venous system. Currently, there are some methods to treat glaucoma, Among these, the use of implants is increasing in these days due to many problems in other methods. However, conventional implants are passive implants and have critical disadvantage. Therefore, it is needed to develop a new implant using MEMS structure which is capable of controlling the IOP actively and copes with personal difference of patients. An active glaucoma implant consists of the valve actuator, pressure sensor, controller, and power supply. In this paper the valve actuator is considered. We make experiments and simulations with the fabricated ...

  • PDF

Telescopic columns as a new base isolation system for vibration control of high-rise buildings

  • Hosseini, Mahmood;Farsangi, Ehsan Noroozinejad
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.853-867
    • /
    • 2012
  • In this paper, a new type of passive energy dissipating system similar to added damping and stiffness (ADAS) and triangular added damping and stiffness (TADAS) is proposed and implemented in the analytical model of a building with hybrid structural system in the structure's base which we call it; Telescopic column. The behavior and performance of a high rise R.C. structure equipped with this system is investigated and compared with conventional base isolation systems such as rubber isolator bearings and friction pendulum bearings. For this purpose a series of ground acceleration records of the San Fernando, Long Beach and Imperial Valley earthquakes are used as the disturbing ground motions in a series of numerical simulations. The nonlinear numerical modeling which includes both material and geometric nonlinearities were carried out by using SAP2000 program. Results show suitable behavior of structures equipped with telescopic columns in controlling the upper stories drifts and accelerations.

OTA-C Realization of Electronically Tunable Current-Mode Biquadratic filters

  • Tangsrirat, Worapong;Unhavanich, Sumalee;Dumawipata, Teerasilapa;Surakampontorn, Wanlop
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.454-454
    • /
    • 2000
  • An active-C biquadratic filter structure is proposed which consists of only seven OTAs and two grounded capacitors. The proposed circuit can simultaneously realize lowpass, bandpass and highpass transfer functions without changing circuit topology. This technique provides many advantages which include low passive and active sensitivities and, moreover, its Q-factor is electronically tunable and separately from the tuning of the natural angular frequency ${\omega}_o$. PSPICE simulation results are obtained that confirm the theoretical analysis.

  • PDF

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.